Drop Out Student Clusterization Using the k-Medoids Algorithm

Mohammad Guntara(1), Totok Suprawoto(2),


(1) Informatics Department, Universitas Teknologi Digital Indonesia (UTDI), Yogyakarta
(2) Informatics Department, Universitas Teknologi Digital Indonesia (UTDI), Yogyakarta
Corresponding Author

Abstract


Student dropout (resign) is a problem that needs to be addressed as early as possible. The number of students dropping out will decrease the quality of the performance of a university, as well as reduce it as much as possible because it will have an impact on public appreciation. As a first step to reducing it, it requires the clustering of students who experience this. Based on this cluster, a pattern of student tendency to drop out can be identified. The parameters used in this study were the GPA, the study period, the number of credits received, and the number of semesters inactive. To compile a cluster, the k-Medoids algorithm is used with 3 types of clusters. Based on the results of the clustering, it can be seen that the dominance of dropout students is due to GPA <2.00 as much as 38.2% and due to not being active in college as much as 52.2%. To measure the cluster quality, the Silhouette coefficient algorithm is used and the resulting coefficient value is 0.3, meaning that the cluster separation rate weak structure.


Keywords


kMedoids, drop out, studentPius

References


STMIK_AKAKOM, “Peraturan akademik stmik akakom 2019,” 2019.

I. I. P. Damanik, S. Solikhun, I. S. Saragih, I. Parlina, D. Suhendro, and A. Wanto, “Algoritma K-Medoids untuk Mengelompokkan Desa yang Memiliki Fasilitas Sekolah di Indonesia,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 520, 2019, doi: 10.30645/senaris.v1i0.58.

B. Riyanto, “Penerapan Algoritma K-Medoids Clustering Untuk Pengelompokkan Penyebaran Diare Di Kota Medan (Studi Kasus: Kantor Dinas Kesehatan Kota Medan),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 562–568, 2019, doi: 10.30865/komik.v3i1.1659.

R. W. Sembiring Brahmana, F. A. Mohammed, and K. Chairuang, “Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 11, no. 1, p. 32, 2020, doi: 10.24843/lkjiti.2020.v11.i01.p04.

S. Defiyanti, M. Jajuli, and N. Rohmawati, “K-Medoid Algorithm in Clustering Student Scholarship Applicants,” Sci. J. Informatics, vol. 4, no. 1, pp. 27–33, 2017, doi: 10.15294/sji.v4i1.8212.

M. Han, Jian and Kamber, Data Mining. San Francisco, USA: Han, Jian & Kamber, and Michelin, 2006.

M. A. Nahdliyah, T. Widiharih, and A. Prahutama, “Metode K-Medoids Clustering dengan Validasi Silhouette Index dan C-Index,” J. Gaussian, vol. 8, no. 2, pp. 161–170, 2019.

R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient,” vol. 5, no. 2, pp. 109–116, 2021.

S. Kumar, Silhouette Method — Better than Elbow Method to find Optimal Clusters, 2020th ed. https://towardsdatascience.com/silhouette-method-better-than-elbow-method-to-find-optimal-clusters-378d62ff6891.

S. Defiyanti, M. Jajuli, and N. Rohmawati, “Optimalisasi K-MEDOID dalam Pengklasteran Mahasiswa Pelamar Beasiswa dengan CUBIC CLUSTERING CRITERION,” J. Nas. Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 211–218, 2017, doi: 10.25077/teknosi.v3i1.2017.211-218.

I. Vhallah, S. Sumijan, and J. Santony, “Pengelompokan Mahasiswa Potensial Drop Out Menggunakan Metode Clustering K-Means,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 2, pp. 572–577, 2018, doi: 10.29207/resti.v2i2.308.

M. Muhamad, A. P. Windarto, and S. Suhada, “Penerapan Algoritma C4.5 Pada Klasifikasi Potensi Siswa Drop Out,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 1–8, 2019, doi: 10.30865/komik.v3i1.1688.

M. Darwis, L. H. Hasibuan, M. Firmansyah, and N. Ahady, “Implementation of K-Means C lustering A lgorithm in M apping the G roups of G raduated or D ropped-out S tudents in the Management Department of the National University,” vol. 04, no. 01, pp. 1–9.

S. Asmiatun, “Penerapan Metode K-Medoids Untuk Pengelompokkan Kondisi Jalan Di Kota Semarang,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 6, no. 2, pp. 171–180, 2019, doi: 10.35957/jatisi.v6i2.193.

M. Sari, I. R. Munthe, and I. Irmayani, “Metode Clustering K-Medoids untuk Aplikasi Pembelajaran di Masa Pandemi COVID-19,” MEANS (Media Inf. Anal. dan Sist., vol. 6, no. 1, pp. 101–105, 2021, doi: 10.54367/means.v6i1.1255.


Full Text: PDF

Article Metrics

Abstract View : 180 times
PDF Download : 51 times

DOI: 10.56327/jtksi.v5i1.1069

Refbacks

  • There are currently no refbacks.