PERBANDINGAN ALGORITMA CART DAN K-NEAREST NEIGHBOR UNTUK PREDIKSI LUAS LAHAN PANEN TANAMAN PADI DI KABUPATEN KARAWANG

Muhammad Fadhlil Aziz(1), Sofi Defiyanti(2), Betha Nurina Sari(3),


(1) Prodi Teknik Informatika Universitas Singaperbangsa Karawang
(2) Prodi Teknik Informatika Universitas Singaperbangsa Karawang
(3) Prodi Teknik Informatika Universitas Singaperbangsa Karawang
Corresponding Author

Abstract


Karawang regency is known as one of the nation rice granaries because the are many areas of rice fields, especially rice. But the transfer of function from agricultural land into industrial or recidential area can change the geographical structure of Karawang regency previously filled with agricultural land into industrial and property areas. Data mining is a technique of extracting an information from large data. One of them regression techniques. In predicting something a dataset of a numeric data type usually uses a regression technique. In this study used regression techniques to predict the area of harvested land in Karawang regency by using tools WEKA 3.8.2. The resulting comparison is seen from correlation coefficient, mean absolute error, and root mean squared error. In comparison algorithm used the same scenario is cross validation 10 folds. The result of the experiment using the same scenario shows that both algorithm can be used to predict the area of harvest area in Karawang regency. The result of evalution with same scenario shows that CART algorithm has better performance than KNN algorithm with correlation coefficient 0,9646, MAE 498,6229, and RMSE 834,0204

Keywords


Area of Harvest Land, CART, Data Mining, K-Nearest Neighbor.

References


Suprapto, "Penerapan data mining untuk memprediksi mahasiswa drop out menggunakan support vector machine," Komputaki, pp. 14-49, 2015.

N. A. Nataraharja, "Perbandingan algoritma C4.5 dan algoritma CART untuk prediksi luas lahan panen tanaman padi di karawang," Skripsi, 2017.

V. Saraswati, "Perbandingan algoritma naive bayes dan k-nearest neighbor untuk prediksi luas lahan panen tanaman padi di karawang," Skripsi, pp. 9-40, 2017.

L. Yang, S. Liu, S. Tsoka and L. G. Papageorgiou, "A regression tree approach using mathematical programming," ELSEVIER, p. 347–357, 2017.

A. Waluyo, M. A. Mukid and T. Wuryandari, "Perbandingan klasifikasi nasabah kredit menggunakan regresi logistik biner dan CART (classification and regression trees)," Media statistika, pp. 95-104, 2014.

H. Leidiyana, "Penerapan algoritma k-nearest neighbor untuk penentuan resiko kredit kepemilikan kendaraan bermotor," Penelitian ilmu komputer, pp. 65-76, 2013.

R. I. Ndaumanu, Kursini and M. R. Arief, "Analisa prediksi tingkat pengunduran diri mahasiswa dengan metode k-nearest neighbor," Jatisi, pp. 1-15, 2014.

S. Sayad, Real Time Data Mining The Future Is Here, Toronto: ResearchGate, 2011.

J. Han, M. Kamber and J. Pei, Data mining concepts and techniques third edition, Waltham: Elsevier, 2012.

F. E. Pratiwi and I. Zain, "Klasifikasi Pengangguran Terbuka Menggunakan CART (Classification and Regression Tree) di Provinsi Sulawesi Utara," Sains dan Seni Promits, pp. 2337-3520, 2014.


Full Text: PDF

Article Metrics

Abstract View : 639 times
PDF Download : 158 times

DOI: 10.56327/jurnaltam.v9i2.648

Refbacks

  • There are currently no refbacks.