KLASTERISASI PENDUDUK LANJUT USIA SUMATERA SELATAN MENGGUNAKAN ALGORITMA K-MODES
(1) Prodi Sistem Informasi STMIK Global Informatika Palembang
(2) Prodi Sistem Informasi STMIK Global Informatika Palembang
Corresponding Author
Abstract
Keywords
References
Badan Pusat Statistik Suamtera Selatan, (2011). Statistik Penduduk Lanjut Usia Sumatera Selatan 2010. Palembang: Badan Pusat Statistik.
Badan Pusat Statistik Suamtera Selatan, (2016). Statistik Penduduk Lanjut Usia Sumatera Selatan 2015. Palembang: Badan Pusat Statistik.
Melpa, B., dan Latipa, H., (2015). Analisis Clustering Menggunakan Metode K-means dalam Pengelompokan Penjualan Produk pada Swalayan Fadhila. Jurnal Media Infotama, Vol.11, No.2, pp.110-118.
Asroni, and Andrian, R., (2015). Penerapan Methode K-means untuk Clustering Mahasiswa Berdasarkan Nilai Akademik dengan Weka Interface Studi Kasus Jurusan Teknik Informatika UMM Magelang. Jurnal Ilmiah Semesta Teknika, Vol. 18, No.1, pp.76-82.
Rajagopal, Sankar. (2011). Customer Data Clustering Using Data Mining Technique. International Journal of Database Management Systems (IJDMS), Vol.3, No.4, pp. 1-11.
Fitrianah, D. et al., (2016). A Data Mining based Approach for Determining the Potential Fishing Zones. International Journal of Information and Education Technology, Vol. 6, pp. 187-191.
Aranganayagi, S., and Thangavel, K., (2009). Improved K-Modes for Categorical Clustering Using Weighted Dissimilarity Measure. International Journal of Computer, Electrical, Automation, Control and Information Engineering, Vol.3, No.3, pp. 729-735.
Han, J., and Kamber, M., (2006). Data Mining: Concepts and Techniques 2nd. United States of America: Elsevier.
Xiang, Z., and Zahidul, M., (2014). Hartigan’s Method for K-modes Clustering and Its Advantages. Proceedings of the Australasian Data Mining Conference, Vol.158.
Huang, Z., (1997) A Fast Clustering Algorithm to cluster Very Large Categorical Datasets in Data Mining”, In Proc. SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery.
Zhou, Zhang, and Liu, (2017). A Global-Relationship Dissimilarity Measure for the k-Modes Clustering Algorithm. Computational Intelligence and Neuroscience, Vol. 2017.
Article Metrics
Abstract View : 619 timesPDF Download : 323 times
DOI: 10.56327/jurnaltam.v8i2.535
Refbacks
- There are currently no refbacks.