SENTIMENT ANALYSIS FOR EXTRACTING STUDENT OPINION DATA ON HIGHER EDUCATION SERVICES USING THE NAIVE BAYES CLASSIFIER AND SUPPORT VECTOR MACHINE METHODS (CASE STUDY AKPRIND INSTITUTE OF SCIENCE AND TECHNOLOGY YOGYAKARTA)
(1) Informatics Department Institut Sains & Teknologi AKPRIND Yogyakarta, Yogyakarta
(2) Informatics Department Institut Sains & Teknologi AKPRIND Yogyakarta, Yogyakarta
(3) Informatics Department Institut Sains & Teknologi AKPRIND Yogyakarta, Yogyakarta
(4) Informatics Department Institut Sains & Teknologi AKPRIND Yogyakarta, Yogyakarta
Corresponding Author
Abstract
Opinions are ideas, opinions, or the results of someone's subjective thoughts in explaining or addressing something. IST AKPRIND Yogyakarta provides comment and suggestion box facilities in the learning evaluation questionnaire. Opinions that have been collected can be used to determine the sentiment of the campus community. This sentiment information can be used in future campus development. The development of a system that can analyze sentiment automatically is designed by comparing the Naive Bayes Classifier (NBC) method and the support vector machine (SVM) optimized by selecting the Information Gain (IG) feature. Prior opinion data needs to be prepared before being analyzed. Preprocessing (text preprocessing) used includes: cleanning, text folding, normalization, stemming, stopword removal, convert negation, and tokenization. The results of this study show that the SVM method produces higher accuracy than NBC. The accuracy test shows the highest accuracy of SVM reaches 99.09% while NBC is 96.56%. The application of IG did not significantly affect the accuracy of the analysis. GI greatly influenced the analysis duration of the SVM method, which could shorten the time by 195.71%.
Keywords
References
F. A. Pozzi, E. Fersini, E. Messina, en B. Liu, ANALYSIS IN SOCIAL NETWORKS :, vol 1. Elsevier Inc., 2017.
P. Gupta, R. Tiwari, en N. Robert, “Sentiment analysis and text summarization of online reviews: A survey”, in International Conference on Communication and Signal Processing, ICCSP 2016, 2016.
J. Song, K. T. Kim, B. Lee, S. Kim, en H. Y. Youn, “A novel classification approach based on Naïve Bayes for Twitter sentiment analysis”, KSII Trans. Internet Inf. Syst., vol 11, no 6, bll 2996–3011, 2017.
M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, en Z. Nawaz, “SVM optimization for sentiment analysis”, Int. J. Adv. Comput. Sci. Appl., 2018.
Gintautas GARˇSVA, P. DAN˙ENAS, en Gintautas GARˇSVA, “SVM and Naıve Bayes Classification Ensemble.pdf”, Balt. J. Mod. Comput., vol 5, no 4, bll 398–409, 2017.
S. M. Weiss, N. Indurkhya, en T. Zhang, Fundamentals of Predictive Text Mining. Springer International Publishing, 2015.
C. Zucco, B. Calabrese, G. Agapito, P. H. Guzzi, en M. Cannataro, “Sentiment analysis for mining texts and social networks data: Methods and tools”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2020.
P. Nandwani en R. Verma, “A review on sentiment analysis and emotion detection from text”, Social Network Analysis and Mining. 2021.
U. Lestari en D. Anugrahni, “Sentiment Analysis of Performance Effectiveness of Malioboro Pedestrian Using Sentistrength Method on Twitter”, J. TAM (Technology Accept. Model., vol 12, no 1, bll 75–79, 2021.
G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter”, INTEGER J. Inf. Technol., vol 1, no 1, bll 32–41, 2017.
D. A. Muthia, “Analisis Sentimen Pada Review Restoran Dengan Teks Bahasa Indonesia Mengunakan Algoritma Naive Bayes”, Jurnalilmu Pengetah. Dan Teknol. Komput., vol 2, no 2, bll 39–45, 2017.
M. Granik en V. Mesyura, “Fake news detection using naive Bayes classifier”, 2017 IEEE 1st Ukr. Conf. Electr. Comput. Eng. UKRCON 2017 - Proc., bll 900–903, 2017.
S. Dey, S. Wasif, D. S. Tonmoy, S. Sultana, J. Sarkar, en M. Dey, “A Comparative Study of Support Vector Machine and Naive Bayes Classifier for Sentiment Analysis on Amazon Product Reviews”, 2020 Int. Conf. Contemp. Comput. Appl. IC3A 2020, bll 217–220, 2020.
J. Liu en E. Zio, “Integration of feature vector selection and support vector machine for classification of imbalanced data”, Appl. Soft Comput. J., vol 75, bll 702–711, 2019.
C. Jian, J. Gao, en Y. Ao, “A new sampling method for classifying imbalanced data based on support vector machine ensemble”, Neurocomputing, vol 193, bll 115–122, 2016.
Article Metrics
Abstract View : 195 timesPDF Download : 97 times
DOI: 10.56327/jurnaltam.v13i1.1220
Refbacks
- There are currently no refbacks.