Implementasi Algoritma Rough Set Dan Naive Bayes Untuk Mendapatkan Rule Dalam Menyeleksi Pemohon Bantuan Fasilitas Rumah Ibadah (Studi Kasus : Pemerintah Kabupaten Pringsewu)
(1) Program Pasca Sarjana Prodi Teknik Informatika IIB Darmajaya, Lampung, Indonesia
(2) Program Pasca Sarjana Prodi Teknik Informatika IIB Darmajaya, Lampung, Indonesia
Corresponding Author
Abstract
In solving the problem of the accuracy of the selected algorithm if it is applied to a prototype application in predicting applicants for assistance with houses of worship facilities in Pringsewu District using data mining classification methods. In solving the problem using the rough set algorithm method and Naive Bayes from the results of the discussion carried out, it can draw conclusions Rough set algorithm and the resulting rule has the highest level of accuracy that is 92% Rough set algorithm model is included in the category of excellent classification and can be implemented in determining predictions more potential grant funding. The rules generated by the Rough set algorithm are applied in the prototype prediction of the grant of houses of worship grants with 92% accuracy of prototype verification testing results. Based on the accuracy of the resulting prototype shows that the methods and prototypes that are applied are good at predicting better results. Naïve Bayes algorithm has an accuracy level of 77% The Naïve Bayes algorithm model is included in the category of good classification and can be implemented in determining the prediction of grants but because the value of the rough set algorithm is higher then the naïve Bayes algorithm is not used to determine the prototype.
Keywords
References
Bramer, Max. (2007). Principles of Data Mining. London: Springer. ISBN-10: 1-84628-765-0, ISBN-13: 978-1-84628-765-7.
Berndtssom 2008 Berndtssom, M., Hansson, J., Olsson, B., & Lundell, B. A Guide For Students In Computer Science And Information Systems. London: Springer, 2008.
Dawson 2009 Dawson, C. W. Projects In Computing And Information System A Student's Guide. England: Addison-Wesley, 2009.
Elvira Sukma Wahyuni. 2015. Penerapan Metode Seleksi Fitur Untuk Meningkatkan Hasil Diagnosis Kanker Payudara. Jurnal teknologi
Gorunescu, F. (2011). Data Mining Concept Model and Techniques. Berlin: Springer. ISBN 978-3-642-19720-8
Han, J., & Kamber, M. (2006). Data Mining Concept and Tehniques. San Fransisco: Morgan Kauffman. ISBN 13: 978-1-55860-901-3
Kotler 2009, 245 Batubara, Muhamad Hendri. Strategi Marketing Public Relation (MPR) Berupa Promosi Dan Sponsorsip Untuk Mempengaruhi Konsumen Dalam Keputusan Pembelian (Studi Produk Perawatan Bayi Johnsons Baby). Tes., Universitas Indonesia, 2010.
Kusrini 2009 Kusrini. Algoritma Data Mining. Jakarta: Andi, 2009.
Kusrini, & Luthfi, E. T. (2009). Algoritma Data Mining. Yogyakarta: Andi Publishing.
Larose, D. T. (2005). Discovering Knowledge in Data. New Jersey: John Willey & Sons, Inc. ISBN 0-471-66657-2.
Liao, T. W., & Triantaphyllou, E. (2007). Recent Advances in Data Mining of Enterprise Data: Algorithms and Applications. Series on Computers and Operations Research, Vol 6. USA: World Scientific. ISBN-13 978-981-277-985-4, ISBN-10 981-277-985-X.
Ulfah Indriani. 2018. Penerapan Metode Rough Set Dalam Menentukan Pembelian Smartphone Android Oleh Konsumen. Jurnal teknologi
Article Metrics
Abstract View : 200 timesPDF Download : 54 times
DOI: 10.56327/jtksi.v3i2.887
Refbacks
- There are currently no refbacks.