Penerapan Algoritma K-Nearest Neighbor (KNN) Untuk Mengklasifikan Jenis Penerimaan Bantuan
(1) Institut Teknologi Bisnis Dan Bahasa Dian Cipta Cendikia, Lampung
(2) Institut Teknologi Bisnis Dan Bahasa Dian Cipta Cendikia, Lampung
(3) Prodi Teknologi Komputer, Institut Teknologi Bisnis Dan Bahasa Dian Cipta Cendikia, Lampung
(4) 
Corresponding Author
Abstract
One of the villages in North Lampung which has many socio-economic problems is Madukoro. Some of the problems that often occur in This village includes high poverty rates, low levels of education and low levels of public health. The K-Nearst Neighbor (KNN) algorithm method was chosen by the author because it can be used as a solution to determine the classification of aid recipients. The K-Nearst Neighbor (KNN) algorithm will determine beneficiaries based on work level, age and income. Calculation results using Microsoft Excel show that there are 110 PKH assistance classes, 57 elderly assistance classes, 9 BLT classes with a total data of 176 beneficiary data. And from the results of the calculation of government assistance in the village of North Lampung Madukoro using rapid miner, it is known that the PKH assistance class is 110 people with an accuracy rate of 89.57%, the elderly assistance class is 58 people with an accuracy rate of 87.50% and then the BLT class is 9 people. with an accuracy rate of 100.00% with a total data of 176 beneficiary data.
Keywords
References
D. Purnamasari, Undang Undang Republik Indonesia Nomor 6 Tahun 2014 Tentang Desa. Sinar Grafika, 2017.
E. Permana, D. Yulianti, and I. F. Meutia, “Dimensi Aksesibilitas Bantuan Sosial Lansia dan Penyandang Disabilitas Melalui Pemutakhiran Data Kependudukan,” Administrativa, no. 4, p. 1, 2022.
sela andesta, “No Title,” implementasi data Min. untuk menentukan kelayakan kinerja guru pengajar dengan Algoritm. c4.5, vol. 15, no. 1,juli 2021, p. 121, 2021.
R. Syahputra, G. J. Yanris, and D. Irmayani, “SVM and Naïve Bayes Algorithm Comparison for User Sentiment Analysis on Twitter,” Sinkron, vol. 7, no. 2, pp. 671–678, 2022.
L. J. Anreaja, N. N. Harefa, J. G. P. Negara, V. N. H. Pribyantara, and A. B. Prasetyo, “Naive Bayes and Support Vector Machine Algorithm for Sentiment Analysis Opensea Mobile Application Users in Indonesia,” JISA(Jurnal Inform. dan Sains), vol. 5, no. 1, pp. 62–68, 2022.
Badan Pusat Statistik, Perilaku Masyarakat Pada Masa PPKM Darurat. 2021.
S. Mukodimah, M. Muslihudin, D. R. Mustofa, and D. Susianto, “Naive Bayes Classifier Method Analysis and Support Vector Machine ( SVM ) Student Graduation Prediction,” NEUROQUANTOLOGY, vol. 20, no. 12, pp. 3522–3533, 2022.
A. Johar, D. Yanosma, and K. Anggriani, “Implementasi Metode K-Nearest Neighbor (KNN) Dan Simple Additive Weighting (Saw) Dalam Pengambilan Keputusan Seleksi Penerimaan Anggota Paskibraka (Studi Kasus : Dinas Pemuda dan Olahraga Provinsi Bengkulu),” Pseudocode, vol. 4, no. 2, pp. 98–112, 2021.
K. Rismayanti, Fera Damayanti, “Penerapan Data Mining Algoritma C4.55 Dalam Menentukan Rekam Jejak Kinerja Dosen STT Harapan Medan,” J. Penelit. Tek. Inform., vol. 3, no. 1, pp. 99–104, 2018.
F. S. Fauzi, Rita Irviani, Andino Maseleno, “Revolutionizing Education through Technology : Big Data and Online Learning,” in CICCSE, 2017, vol. 1, no. 1, p. 44.
S. Ipnuwati, “Sistem Pendukung Keputusan Perencanaan Promosi Kampus Berbasis Data Mining Dengan Metode Klasifikasi Pada Stmik Pringsewu Lampung,” 2013.
A. M. Muhammad Muslihudin, Rita Irviani, Prayugo Khoir, “Decision Support System Level Economic Classification Of Citizens Using Fuzzy Multiple Attribute Decision Makin,” in ICCSE, 2017, pp. 1–75.
T. A. Muhammad Husni Rifqo, “Implementasi Algoritma C4.5 Untuk Menentukan Calon Debitur Dengan Mengukur Tingkat Risiko Kredit Pada Bank Bri Cabang Curup,” J. Pseudocode, vol. 3, no. 2, pp. 83–90, 2016.
C. J. Mantas and J. Abellán, “Credal-C4.5: Decision tree based on imprecise probabilities to classify noisy data,” Expert Syst. Appl., vol. 41, no. 10, 2014.
W. G. Riyan Latifahul Hasanah, Muhamad Hasan, Witriana Endah Pangesti, Fanny Fatma Wati, “Klasifikasi Penerima Dana Bantuan Desa Menggunakan Metode Knn (K-Nearest Neighbor),” Techno Nusa Mandiri, vol. 16, no. 1, pp. 1–6, 2019.
Article Metrics
Abstract View : 61 timesPDF Download : 16 times
DOI: 10.56327/jtksi.v6i2.1489
Refbacks
- There are currently no refbacks.