Diabetes Classification Analysis Using the Euclidean Distance Method Based on the K-Nearest Neighbors Algorithm
(1) Teknik Informatika, Universitas Islam Kalimantan MAB Banjarmasin, Banjarmasin
(2) Teknik Informatika, Universitas Islam Kalimantan MAB Banjarmasin, Banjarmasin
Corresponding Author
Abstract
Diabetes is a chronic disease characterized by high blood sugar (glucose) levels. Diabetes can increase the risk of a number of eye problems, some of which can lead to vision loss. It is estimated that 9.1 million Indonesians suffer from diabetes. Based on age group, most people with diabetes are in the 55-74 year age range. However, this disease is also experienced by young people in their 20s to 40s. One way to detect the classification of diabetes in machine learning is to use a dataset as training data so that performance testing can be carried out with the right classification method. The method used in this study is the K-Nearest Neighbor (KNN) algorithm, which is a method for classifying objects based on learning data that is closest to the object. The results of this study are Pattern Recognition in determining the right K value so that it shows a good accuracy value. At this stage, the value of K = 19 shows a good accuracy value, which is about 76% with an error rate of K = 19, which is about 24%
Keywords
References
Y. Nurdiansyah, “Informal : informatics journal.,” vol. 2, no. 2, pp. 114–122, Jul. 2017.
D. R. Ente, S. A. Thamrin, S. Arifin, H. Kuswanto, and A. Andreza, “KLASIFIKASI FAKTOR-FAKTOR PENYEBAB PENYAKIT DIABETES MELITUS DI RUMAH SAKIT UNHAS MENGGUNAKAN ALGORITMA C4.5,” Indones. J. Stat. Its Appl., vol. 4, no. 1, pp. 80–88, Feb. 2020, doi: 10.29244/ijsa.v4i1.330.
D. Sugianti, M. Adib Al Karomi, and S. Widya Pratama Pekalongan, OPTIMASI PARAMETER K PADA ALGORITMA K-NEAREST NEIGHBOUR UNTUK KLASIFIKASI PENYAKIT DIABETES MELLITUS.
S. Aulia, S. Hadiyoso, and D. Nur Ramadan, “Analisis Perbandingan KNN dengan SVM untuk Klasifikasi Penyakit Diabetes Retinopati berdasarkan Citra Eksudat dan Mikroaneurisma.”
A. M. Argina, “Indonesian Journal of Data and Science Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” jurnal.yoctobrain.org, vol. 1, no. 2, pp. 29–33, 2020.
A. Homaidi, “Aplikasi Pengusulan dan Pemantauan Pelaksanaan Penelitian dan Pengabdian Masyarakat Universitas Ibrahimy,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, pp. 225–236, May 2021, doi: 10.30812/matrik.v20i2.942.
H. J. Suryanto, A. R. C., and Y. Lukito, “Indoor Positioning System dengan Algoritma K-Means dan KNN,” J. Tek. Inform. dan Sist. Inf., vol. 2, no. 3, Dec. 2016, doi: 10.28932/JUTISI.V2I3.641.
Kusrini and L. Taufiq Emha, “Algoritma Data Mining Yogyakarta,” Algoritm. Data Min., no. February, pp. 149–176, 2009.
G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based approach in classification,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2888, pp. 986–996, 2003, doi: 10.1007/978-3-540-39964-3_62.
D. A. Fauziah, A. Maududie, and I. Nuritha, “Klasifikasi Berita Politik Menggunakan Algoritma K-nearst Neighbor,” Berk. SAINSTEK, vol. 6, no. 2, p. 106, Dec. 2018, doi: 10.19184/bst.v6i2.9256.
R. K. Dinata, H. Akbar, and N. Hasdyna, “Algoritma K-Nearest Neighbor dengan Euclidean Distance dan Manhattan Distance untuk Klasifikasi Transportasi Bus,” Ilk. J. Ilm., vol. 12, no. 2, pp. 104–111, Aug. 2020, doi: 10.33096/ilkom.v12i2.539.104-111.
S. Mutro, A. Izzah, A. Kurniawardhani, and M. Masrur, “OPTIMASI TEKNIK KLASIFIKASI MODIFIED K NEAREST NEIGHBOR MENGGUNAKAN ALGORITMA GENETIKA Optimization Techniques Modi ed k Nearest Neighbor Classi cation Using Genetic Algorithm,” ejournal.umm.ac.id, pp. 130–134, 2014.
D. Sugianti, M. Adib Al Karomi, and S. Widya Pratama Pekalongan, OPTIMASI PARAMETER K PADA ALGORITMA K-NEAREST NEIGHBOUR UNTUK KLASIFIKASI PENYAKIT DIABETES MELLITUS, vol. 0, no. 0. 2017.
V. Z. Kamila and E. Subastian, “ANALISIS DAN PERANCANGAN SISTEM EVALUASI PELATIHAN TENAGA KEPENDIDIKAN,” Sebatik, vol. 24, no. 2, Dec. 2020, doi: 10.46984/sebatik.v24i2.1125
Article Metrics
Abstract View : 133 timesPDF Download : 48 times
DOI: 10.56327/jtksi.v5i3.1249
Refbacks
- There are currently no refbacks.