THE APPLICATION OF PRODUCT MARKETING STRATEGY USING AN ASSOCIATION RULE MINING APRIORI METHOD

Irene Ananda(1), Umniy Salamah(2),


(1) Mercu Buana University
(2) Mercu Buana University
Corresponding Author

Abstract


In competition in the business world, it is necessary to find the right strategy that can be used in sales optimization. One strategy used in optimization is to determine the layout of the goods and keep the stock of goods available. Factors that influence the needs of market analysis is the level of frequency of consumers in buying an item. The number of transactions and data recording activities that still use the manual system, increasingly piling up only into expenditure and income records without any further processing. The method used in this analysis is the Apriori Algorithm which is commonly used in transaction data or commonly called Market Basket Analysis. Apriori algorithm is a type of association rule that can find a combination of items using two benchmarks, namely support and confidence. The concept of this association rule is to collect sales transaction data which will then be carried out by the mining process by determining the value of support and the value of trust. The results of this study can facilitate companies to increase sales turnover which refers to the results of processing sales transaction data using the Apriori Algorithm.

 


Keywords


Application, Transactions, Data Mining, Association Rule Mining, Apriori

References


P. B. I. S. Putra, N. P. S. M. Suryani, and S. Aryani, “Analysis of Apriori Algorithm on Sales Transactions to Arrange Placement of Goods on Minimarket,” Int. J. Eng. Emerg. Technol., vol. 3, no. 1, pp. 13–17, 2018.

R. Husna, R. Lestari, and Y. Hendra, “Inventory model of goods availability with apriori algorithm,” J. Phys. Conf. Ser., vol. 1317, no. 1, 2019.

T. Kachwala and L. K. Sharma, “CSEIT1833754 | Association Rule Mining Approach for Customer Relationship Management,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 3, no. 3, pp. 1991–1995, 2018.

J. Chandra and K. R. Dewi, “Implementation of Data Mining Sales of Milk Using Apriori Algorithm Method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 662, no. 2, 2019.

S. Panjaitan et al., “Implementation of Apriori Algorithm for Analysis of Consumer Purchase Patterns,” J. Phys. Conf. Ser., vol. 1255, no. 1, 2019.

Y. Sutisnawati and M. Reski, “Looking for Transaction Data Pattern Using Apriori Algorithm with Association Rule Method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 662, no. 2, 2019.

Y. Nur, A. Triayudi, and I. Diana, “Implementation of Data Mining to Predict Food Sales Rate Method using Apriori,” Int. J. Comput. Appl., vol. 178, no. 35, pp. 22–28, 2019.

Mustakim et al., “Market Basket Analysis Using Apriori and FP-Growth for Analysis Consumer Expenditure Patterns at Berkah Mart in Pekanbaru Riau,” J. Phys. Conf. Ser., vol. 1114, no. 1, 2018.

Z. Wardah and D. Fitrianah, “Implementasi Data Mining Pada Penjualan Tiket Pesawat Menggunakan Algoritma Apriori (Studi Kasus : PT. Pesona Ceria Travel),” Pelita Inform. Budi Darma, vol. 2, no. 2, pp. 31–39, 2017.

Q. K. Kadhim, “Data Mining Concepts and Techniques مظاك ناعنك يصق م. م بوساحلا مولع مسق Data Mining Concepts and Techniques,” no. January, 2018.

M. Muslihudin and A. Larasati, “Perancangan Sistem Aplikasi Penerimaan Mahasiswa Baru Di Stmik Pringsewu Menggunakan Php Dan Mysql,” J. TAM, vol. 3, pp. 32–39, 2014.

A. N. Ismail, F. Sumarsono, and Nuryana, “Perancangan Website Data Karyawan Dengan menggunakan PHP dan MYSQL,” J. Sist. Basis data, no. January, pp. 1–8, 2019.

Y. Nur, A. Triayudi, and I. Diana, “Implementation of Data Mining to Predict Food Sales Rate Method using Apriori,” Int. J. Comput. Appl., vol. 178, no. 35, pp. 22–28, 2019.

D. Sophia and L. Y. Banowosari, “Implementasi Metode Aturan Asosiasi Menggunakan Algoritma Apriori Pada Data Transaksi Penjualan Di Waroeng Spesial Sambal,” J. Inform. dan Komput., vol. 22, no. 1, pp. 44–56, 2017.

U. Salamah and E. Maulana, “DEVELOPMENT OF ART PERFORMANCE TICKETS INFORMATION SYSTEM AT,” pp. 29–39.

S. D. H. Permana and Faisal, “Analisa Dan Perancangan Aplikasi Point Of Sale (POS) Untuk Mendukung Manajemen Hubungan Pelanggan,” J. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 1, p. 20, 2015.


Full Text: PDF

Article Metrics

Abstract View : 514 times
PDF Download : 81 times

DOI: 10.56327/ijiscs.v4i2.899

Refbacks