FUZZY SAW SEBAGAI METODE PENGAMBILAN KEPUTUSAN UJI KELAIKAN KENDARAAN BERMOTOR DINAS PERHUBUNGAN KABUPATEN PESAWARAN

Asisca Veronika¹, Satria Abadi²

Jurusan Sistem Informasi STMIK Pringsewu

Jl. Wismarini No.09 Pringsewu Lampung, Tepl/Fax. (0729) 22240 Website: www.stmikpringsewu.ac.id Email: asiscaveronika37@gmail.com

ABSTRAK

Pengujian Kendaraan Bermotor merupakan serangkaian pemeriksaan komponen-komponen kendaraan yang harus memenuhi persyaratan ambang batas laik jalan, untuk memastikan kendaraan yang akan digunakan atau dioperasikan di jalan dalam kondisi teknis baik demi menjaga keselamatan dan kelestarian lingkungan. Hasil pengujian ini pada akhirnya menentukan tindakan yang nantinya harus dilakukan terkait pengujian fisik tersebut, untuk menentukan hasil pengujian perlu dilakukan analisis yang berfungsi untuk mengetahui kondisi fisik tiap kendaraan. Analisis ini berguna untuk menerapkan rekomendasi-rekomendasi yang diperlukan untuk pengambilan keputusan dan tindakan dalam hal pengujian fisik. Sehingga tindakan pengujian yang nantinya dilakukan oleh petugas PKB Dishub Pesawaran berjalan dengan optimal. Sistem Pendukung Keputusan atau Decision Support Sistem (DSS) merupakan sebuah sistem untuk mendukung para pengambil keputusan manajerial dalam situasi keputusan semi terstruktur dan disini penulis membuat suatu penelitian tentang model DSS untuk mengetahui hasil uji kelaikan kendaraan bermotor, penelitian ini menggunakan metode Fuzzy Multiple Attribute Decision Making (FMADM) dimana metode ini merupakan suatu cara untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu.

Kata Kunci: SAW, SPK, Uji Kelaikan Kendaraan

1. PENDAHULUAN

1.1. Latar Belakang

Transportasi merupakan sarana yang dibutuhkan banyak orang sejak jaman dahulu dalam melaksanakan kegiatannya yang diwujudkan dalam bentuk angkutan. Pengangkutan terbagi dalam dua hal, yaitu pengangkutan orang atau barang yang peruntukannya untuk umum atau pribadi. Mengenai jalurnya bisa melalui udara seperti pesawat terbang, laut atau perairan seperti kapal atau perahu, dan darat seperti mobil, pedati dan sebagainya. Pengangkutanpengangkutan tersebut menimbulkan masalahmasalah dalam transportasi yang makin berkembang. Salah satunya adalah mengenai uji kelaikan kendaraan bermotor. Kendaraan bermotor adalah kendaraan yang digerakkan oleh peralatan teknik dimana peralatan tersebut merupakan satu kesatuan sistem yang terdiri dari rangka landasan, bagian-bagian motor penggerak, perangkat penerus daya, bodi kendaraan, perangkat rem, perangkat suspensi/ roda, perangkat kemudi beserta kelistrikan yang saling mengadakan Inter relasi secara tertib. Pengujian Kendaraan Bermotor serangkaian kegiatan menguji yang memeriksa bagian-bagian kendaraan bermotor, seperti kelengkapan surat kendaraan, kelengkapan

komponen pendukung, teknis ukuran kendaraan bermotor, serta uji laik jalan kendaraan bermotor dalam rangka pemenuhan persyaratan teknis dan laikjalan.

Menjamin kelaikan kendaraan barang yang ada di jalan sudah seharusnya diawasi oleh pemerintah. Pengawasan yng dilakukan tersebut berupa uji kir (uji berkala).Uji berkala yang dilakukan pemerintah, khususnya kementerian perhubungan, sudah jelas diatur dalam undangundang nomor 22 tahun 2009 tentang Lalu Lintas dan Angkutan Jalan (PP LLAJ). Serta diperdalam pembahasannya pada Peraturan Menteri Perhubungan Republik Indonesia Nomor PM 133 tahun 2015 tentang Pengujian Berkala Kendaraan Bermotor (Permenhub PBKB).

Pada pasal 53 ayat satu UU LLAJ, uji berkala sebagaimana dimaksud, wajib dilakukan untuk mobil penumpang umum, bus, barang, kereta gandengan, dan kereta tempelan yang dioperasikan di Jalan. Lalu pada pasal 2, pengujian berkala tersebut meliputi kegiatan, pemeriksaan dan pengujian fisik, serta pengesahan hasil uji.

Pelaksanaan Pengujian kendaraan bermotor di Unit PKB dan pemeriksaan dilakukan oleh Penguji yang memenuhi persyaratan yang ditetapkan oleh pemerintah, bagi kendaraan yang

memenuhi kelaikan akan disahkan oleh pejabat yang ditunjuk akan diberi tanda uji.

Hasil dari uji kelaikan kendaraan bermotor ini yang nantinya akan menjadi kunci untuk menentukan lalik jalan atau tidak kendaraan bermotor.

Dari penelitian di atas kelaikan uji kendaraan bermotor dapat diambil dengan sistem pengambilan keputusan menggunakan metode Fuzzy SAW yang diharapkan akan memperoleh hasil uji untuk kelaikan kendaraan bermotor pada Dinas Perhubungan Pesawaran.

1.2. Rumusan Masalah

Berdasarkan latar belakang tersebut dapat dirumuskan permasalahan akan yang diselesaikan yaitu bagaimana merancang sebuah sistem pendukung keputusan dengan menggunakan Fuzzy Multiple Attribute Decision Making (FMADM) Dengan Metode Simple Additive Weighting (SAW) untuk keputusan uji kelaikan kendaraaan bermotor roda empat Dinas Perhubungan Pesawaran.

1.3. Batasan Masalah

Dalam penelitian ini hanya meliputi pembuatan sistem pendukung keputusan untuk menentukan uji kelaikan kendaraan bermotor roda empat menggunakan Fuzzy Multiple Attribute Decision Making (FMADM) Dengan Metode Simple Additive Weighting (SAW).

1.4. Tujuan Penelitian

Tujuan penelitian ini adalah membangun suatu sistem pendukung keputusan dengan menggunakan Fuzzy Multiple Atribut Decission Making (FMADM) dengan metode Simple Additive Weighting (SAW) dalam menentukan uji kelaikan kendaraan bermotor untuk menjamin keselamatan (memeriksa laik jalan kendaraan bermotor), mencegah pencemaran lingkungan (mengontrol emisi gas buang), dan pelayan umum kepada masyarakat.

1.5. Kegunaan Penelitian

Kegunaan dari penelitian adalah untuk mempermudah dalam pengambilan keputusan hasil uji kelaikan kendaraan bermotor, sehingga dapat digunakan sebagai alternatif dalam pengambilan keputusan.

2. LANDASAN TEORI

2.1. Definis Sistem

Sistem merupakan prosedur logis dan rasional guna melakukan atau merancang suatu rangkaian komponen yang berhubungan satu sama lain. (James Havery dalam jurnal Akbar Taufik, 2013)

Sistem adalah sebuah struktur konseptual yang tersusun dari fungsi-fungsi yang saling berhubungan yang bekerja sebagai suatu kesatuan organik untuk mencapai suatu hasil yang diinginkan secara efektif dan efisien. (John, 2011:12)

Sistem adalah agregasi atau pengelompokkan objek-objek yang dipersatukan oleh beberapa bentuk interaksi yang tetap atau saling tergantung, sekelompok unit yang berbeda, yang dikombinasikan sedemikian rupa sehingga membentuk suatu keseluruhan yang integral dan berfungsi, beroperasi, atau bergerak dalam satu kesatuan. (John, 2013:3)

Dari uraian definisi di atas penulis menyimpulkan bahwa sistem merupakan sebuah struktur konseptual untuk melakukan/ merancang yang dikombinasikan secara keseluruhan untuk maksud atau tujuan tertentu.

2.2. Definisi Keputusan

Keputusan adalah suatu pengakhiran daripada proses pemikiran tentang suatu masalah atau problema untuk menjawab pertanyaan apa yang harus diperbuat guna mengatasi masalah tersebut, dengan menjatuhkan pilihan pada suatu alternatif. (Atmosudirjo, 2013:25)

Keputusan adalah hasil pemecahan masalah yang dihadapinya dengan tegas. Suatu keputusan merupakan jawaban yang pasti terhadap suatu pertanyaan. Keputusan harus dapat menjawab pertanyaan tentang apa yang dibicarakan dalam hubungannya dengan perencanaan. Keputusan dapat pula berupa tindakan terhadap pelaksanaan yang sangat menyimpang dari rencana semula. (Davis, 2010:12)

Keputusan adalah suatu atau sebagai hukum situasi. Apabila semua fakta dari situasi itu dapat diperolehnya dan semua yang terlibat, baik pengawas maupun pelaksana mau mentaati hukumnya atau ketentuannya, maka tidak sama dengan mentaati perintah. Wewenang tinggal dijalankan, tetapi itu

merupakan wewenang dari hukum situasi. (Follet, 2012:12).

Dari pengertian-pengertian keputusan di atas, dapat ditarik suatu kesimpulan bahwa keputusan merupakan suatu pemecahan masalah sebagai suatu hukum situasi yang dilakukan melalui pemilihan satu alternatif dari beberapa alternatif.

2.3 Definisi Sistem Pendukung Keputusan

atau Decision Support System Sistem Pendukung Keputusan secara umum didefinisikan sebagai sebuah sistem yang mampu memberikan kemampuan baik kemampuan pemecahan masalah maupun kemampuan pengkomunikasian untuk masalah semi-terstruktur. Secara khusus. didefinisikan sebagai sebuah sistem yang mendukung kerja seorang manajer maupun sekelompok manajer dalam memecahkan masalah semi-terstruktur dengan memberikan informasi ataupun usulan menuju pada keputusan tertentu (Hermawan, 2010: 12).

2.2. Pengujian Kendaraan Bermotor

Pengujian kendaraan bermotor merupakan serangkaian pemeriksaan komponen-komponen kendaraan yang harus memenuhi persyaratan ambang batas laik jalan, untuk memastikan akan kendaraan yang digunakan dioperasikan dijalan dalam kondisi teknis baik demi menjaga keselamatan dan kelestarian lingkungan. Berdasarkan UU Nomor 22 Tahun 2009 tentang Lalu Lintas disebutkan bahwa setiap kendaraan angkutan umum dan angkutan barang wajib memiliki buku uji yang masih berlaku dan membayar retribusi sesuai peraturan vang berlaku.

Pemeriksaan dan pengujian fisik mobil penumpang umum, mobil bus, mobil barang, kendaraan khusus, kereta gandengan, dan kereta tempelan sebagaimana dimaksud dalam Pasal 53 ayat 2 meliputi pengujian terhadap persyaratan teknis dan pengujian persyaratan laik jalan. Berdasarkan kriteria tersebut, kemudian ditentukan hasil pengujian fisik. Hasil pengujian ini pada akhirnya menentukan tindakan yang nantinya harus dilakukan terkait pengujian fisik tersebut, untuk menentukan hasil pengujian perlu dilakukan analisis yang berfungsi untuk mengetahui kondisi fisik tiap kendaraan. Analisis ini berguna untuk menerapkan rekomendasi-rekomendasi yang diperlukan untuk pengambilan keputusan dan tindakan dalam hal pengujian fisik. Sehingga tindakan pengujian yang nantinya dilakukan oleh petugas DISHUB Pesawaran berjalan dengan optimal.

2.3. FMADM

Fuzzy Multiple Attribute Decision Making (FMADM) Fuzzy Multiple Attribute Decision Making (FMADM) adalah suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu. Inti dari FMADM adalah menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan proses perankingan yang menyeleksi alternatif yang sudah diberikan. Pada dasarnya, ada 3 pendekatan untuk mencari nilai bobot atribut, yaitu pendekatan subyektif, pendekatan obyektif dan pendekatan integrasi antara subyektif & obyektif. Masing masing pendekatan memiliki kelebihan dan kelemahan. Pada pendekatan subyektif, nilai bobot ditentukan berdasarkan subyektifitas dari para pengambil keputusan, sehingga beberapa factor dalam proses perankingan alternatif bisa ditentukan secara bebas. Sedangkan pada pendekatan obyektif, nilai bobot dihitung secara matematis sehingga mengabaikan subyektifitas dari pengambil keputusan. Ada beberapa metode dapat digunakan yang untuk mnyelesaikan masalah FMADM.

- a. Simple Additive Weighting Method (SAW)
- b. Weighted Product (WP)
- c. ELECTRE
- d. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
- e. Analytic Hierarchy Process (AHP)

2.4. Simple Additive Weighting (SAW)

Merupakan metode penjumlahan terbobot. Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari ranting kinerja pada setiap alternatif pada semua kriteria (Kusumadewi, 2012: 12).

Metode SAW membutuhkan proses normalisasi matrik keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua ranting alternatif yang ada. Metode SAW mengenal adanya 2 atribut yaitu kriteria keuntungan (benefit) dan kriteria biaya (*Cost*). Perbedaan mendasar dari kedua kriteria ini adalah dalam pemilihan kriteria ketika mengambil keputusan. Berikut ini adalah rumus dari metode *simple additive weighting (SAW)*:

$$Rij = \left\{ \begin{array}{c} \frac{xij}{maxi(xij)} \\ \frac{Min \ i \ xij}{Xij} \end{array} \right\}$$

Jika j adalah atribut keuntungan Jika j adalah atribute biaya (*cost*) Keterangan:

Rij = Nilai ranting kinerja ternormalisasi

Xij = Nilai atribut yang dimiliki dari setiap kriteria

Maxi (xij) = Nilai terbesar dari setiap kriteria Min i xij = Nilai terkecil dari setiap kriteria Benefit = jika nilai terbesar adalah terbaik Cost = jika nilai terkecil adalah terbaik

 $\mathbf{V_i} = \sum W_j R_{ij....(1)}$

Keterangan:

Vi = rangking untuk setiap alternatif Wj = nilai bobot dari setiap kriteria Ri = nilai rating kinerja ternormalisasi

Adapun langkah penyelesaian dalam menggunakannya adalah:

- 1. Menentukan alternatif, yaitu Ci
- 2. Menentukan ranting kecocokan setiap alternatif pada setiap kriteria.
- 3. Memberikan nilai ranting kecocokam setiap alternatif pada setiap kriteria.
- 4. Menentukan bobot preferensi atau tingkat kepentingan (W) setiap kriteria. W= [W1, W2, W3, Wj]
- 5. Membuat tabel ranting kecocokan dari setiap alternatif pada setiap kriteria.

Membuat matriks keputusan (X) yang dibentuk dari tabel ranting kecocokan dari setiap alternatif pada setiap kriteria. Nilai X setiap slternatif (Ai) pada setiap kriteria (Cj) yang sudah ditentukan, dimana, i=1,2,...m dan j=1,2,...

3. METODE PENELITIAN

3.1. Metode Pengumpulan Data

Adapun metode-metode yang penulis lakukan adalah sebagai berikut:

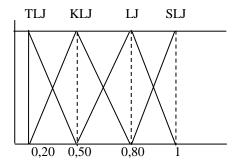
1. Metode wawancara

Metode ini yaitu dengan Penulis melakukan wawancara dengan staf atau karyawan yang ada di Kantor Dinas Perhubungan Kab. Pesawaran.

2. Metode observasi

Penulis melakukan pengamatan pada obyek secara langsung di Kantor Kantor Dinas Perhubungan Kabupaten Pesawaran.

3. Metode dokumentasi


Metode ini penulis gunakan untuk mengetahui proses-proses pengujian kendaraan yang dilakukan pegawai di PKB (Pengujian Kendaraan Bermotor) Kantor Dinas Perhubungan Kab. Pesawaran.

4. Metode kepustakaa

Penulis memanfaatkan teori-teori yang ada yang menyangkut ilmu-ilmu system informasi dan teknologi informasi khususnya dalam bidang web.

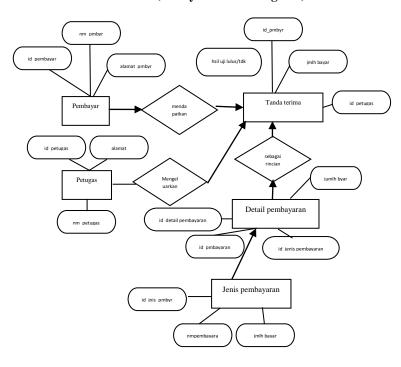
3.2. Perancangan Sistem

Model perancangan yang digunakan dalam penelitian ini menggunakan Fuzzy Multiple Attribute Decision Making (FMADM).

Keterangan:

TLJ : Tidak Laik Jalan KLJ : Kurang Laik Jalan

LJ: Laik Jalan SLJ: Sangat Laik Jalan


Gambar 3.1. Variabel kelaikan uji kendaraan

3.3. Diagram Konteks

innut formulir domisili input Nama Input No. Polisi Input Jenis kendaraan data nama domisili KTP SRUT Masyarakat Pegawai bukti pelunasan SPK Uii Kelaikan hasil uii lulus/tidak Kendaraan Bermotor Dinas Perhubungan Kab. Pesawaran Laporan uii kelaikan Kepala Dinas

Gambar 3.2. Diagram Konteks

3.4. ERD (Entity Relation Diagram)

Gambar 3.3. Diagram ERD

3.5. Pembobotan Kriteria

Dalam penelitian ini proses pengambilan keputusan kelaikan uji kendaraan bermotor menggunakan metode *Fuzzy Multiple Attribute Decision Making* (FMADM) terdapat beberapa kriteria-kriteria antara lain:

Tabel 3.1. Pembobotan Kriteria

Keriteria	Nilai Bobot	Keterangan		
C1	35%	Status Kendaraan		
C2	20%	Kelengkapan Surat Kendaraan		
C3	15%	Kelengkapan Komponen Pendukung		
C4	15%	Teknis Ukuran Kendaraan Bermotor		
C5	15%	Uji Laik Jalan Kendaraan Bermotor		
Total	100%	-		

Data yang dihasilkan adalah urutan alternatif mulai dari nilai terendah sampai nilai tertinggi. Hasil akhir yang diperoleh dari nilai setiap kriteria itu memiliki nilai bobot yang berbeda, Dari masing-masing kriteria tersebut akan ditentukan bobot-bobotnya. Pada bobot terdiri dari Empat bilangan Fuzzy, yaitu Sangat Laik Jalan (SLJ), Laik Jalan (LJ), Kurang Laik Jalan (KLJ), Tidak Laik Jalan (TLJ) berikut adalah beberapa tabel kriteria antara lain:

a. Status kendaraan (C1)

Kriteria ini merupakan data yang dibutuhkan dalam pengambilan keputusan berdasarkan status kendaraan yaitu mobil baru dan mobil perpanjang. Berikut penjabaran yang telah dikonversikan dengan bilangan fuzzy

Tabel 3.2. Kriteria Status Kendaraan (C1)

Status Kendaraan	Bobot	Bilangan Crisp
Baru	Sangat laik jalan	1
Perpanjang	Laik jalan	0,80

b. Kelengkapan Surat Kendaraan

Kriteria ini merupakan data yang dibutuhkan dalam pengambilan keputusan berdasarkan kelengkapan surat kendaraan diantaranya Kartu Tanda Penduduk (KTP), Surat Tanda Nomor Kendaraan bermotor (STNK), Sertifikat Registrasi Uji Tipe (SRUT) atau pengesahan rancang bangun kendaraan bermotor dan Buku Uji Kendaraan Bermotor. Berikut penjabaran yang telah dikonversikan dengan bilangan fuzzy Tabel 3.3. Kriteria Kelengkapan Surat Kendaraan (C2)

Bilangan Surat Kendaraan **Bobot** Crisp KTP. STNK. Sangat laik 1 **SRUT** ialan KTP dan STNK Laik jalan 0.80 KTP Kurang laik 0,50 jalan

c. Kelengkapan Komponen Pendukung

Kriteria ini merupakan data yang dibutuhkan dalam pengambilan keputusan berdasarkan kelengkapan komponen pendukung diantaranya pengukur kecepatan, kaca spion, penghapus kaca, klakson, bumper dan sabuk pengaman. Berikut penjabaran yang telah dikonversikan dengan bilangan fuzzy

Tabel 3.4. Kriteria Kelengkapan Komponen Pendukung (C3)

Komponen pendukung	Bobot	Bilangan crisp
Pengukur kecepatan, kaca spion, penghapus kaca, klakson, bumper, sabuk keselamatan	Sangat laik jalan	1
Pengukur kecepatan,	T '1	0,80
kaca spion, penghapus	Laik	
kaca, klakson, sabuk	jalan	
keselamatan	,	
Pengukur kecepatan,	Kurang	0,50
kaca spion, penghapus	laik	
kaca, klakson	jalan	
Pengukur kecepatan,	Tidak	0,20
kaca spion, penghapus	laik	
kaca	jalan	

d. Teknis Ukuran Kendaraan Bermotor

Kriteria ini merupakan data yang dibutuhkan dalam pengambilan keputusan berdasarkan teknis ukuran kendaraaan bermotor diantaranya ukuran yang sesuai dengan standar kendaraan yang diuji dan ukuran yang tidak sesuai dengan standar kendaraan yang diuji. Berikut penjabaran yang telah dikonversikan dengan bilangan fuzzy

Tabel 3.5. Kriteria teknis ukuran kendaraan bermotor (C4)

octiliotor (C4)				
Ukuran kendaraan	Bobot	Bilangan crisp		
Ukuran sesuai	Laik jalan	0,80		
dengan standar				
jenis kendaraan				
yang diuji				
Ukuran tidak	Kurang laik	0,50		
sesuai dengan	jalan			
standar jenis				
kendaraan yang				
diuji				

e. Uji Laik Jalan Kendaraan Bermotor

Kriteria ini merupakan data yang dibutuhkan dalam pengambilan keputusan berdasarkan uji laik jalan kendaraan bermotor diantaranya:

- ✓ Emisi Gas Buang
- ✓ Kebisingan Suara
- ✓ Efesiensi sistem rem utama dan rem parkir
- ✓ Kincup roda depan
- ✓ Tingkat suara klakson
- ✓ Daya pancar dan arah sinar lampu utama
- ✓ Radius putar
- ✓ Akurasi alat penunjuk kecepatan
- ✓ Kesesuaian kinerja roda dan kondisi ban
- Kesesuaian daya mesin penggerak terhadap berat kendaraan

Dengan hasil presentase yang diperoleh dari uji laik jalan diatas.

Berikut penjabaran yang telah dikonversikan dengan bilangan fuzzy

Tabel 3.6. Kriteria Uji Laik Jalan Kendaraan Bermotor (C5)

zermeter (ee)					
Hasil uji	Bobot	Bilangan crisp			
100 - 90 %	Sangat laik jalan	1			
90 - 80 %	Laik jalan	0,80			
80 – 65 %	Kurang laik jalan	0,50			
65 – 0 %	Tidak laik jalan	0,20			

4. PEMBAHASAN

4.1. Rating Kecocokan

Setelah menentukan nilai pada masing-masing kriteria langkah selanjutnya yaitu menentukan rating kecocokan pada beberapa alternatif.

Tabel 4.1. Alternatif Kendaraan

No	Alternatif	No. Kendaraan		
1.	A	BE 9224 RA		
2.	В	BE 9258 RC		
3.	С	BE 9523 RA		
4.	D	BE 9434 RC		
5.	Е	BE 9325 RB		

Langkah berikutnya menentukan ranting kecocokan:

Tabel 4.2. Ranting Kecocokan

Alternatif	Hasil Penilaian				
Alternatii	C1	C2	C3	C4	C5
A	1	1	1	0.80	1
В	0.80	1	0.50	0.50	0.80
C	0.80	0.50	0.20	0.50	0.50
D	0.80	0.80	1	0.80	0.80
Е	1	0.50	1	0.80	1

Kemudian melakukan matriks keputusan yang dibentuk dari:

$$X = \left(\begin{array}{ccccccc} 1 & 1 & 1 & 0.80 & 1 \\ 0.80 & 1 & 0.50 & 0.50 & 0.80 \\ 0.80 & 0.50 & 0.20 & 0.50 & 0.20 \\ 0.80 & 0.80 & 1 & 0.80 & 0.50 \\ 1 & 0.50 & 1 & 0.80 & 1 \end{array} \right)$$

Melakukan normalisasi dari setiap alternatif.

Rumus yang dipakai sebagai berikut:

$$Rij = \left\{ \begin{array}{c} \frac{Xij}{maxi(xij)} \\ \frac{Min\ i\ xij}{Xij} \end{array} \right\}$$

Dimana:

Jika J adalah atribut keuntungan (benefit) Jika J adalah atribut biaya (cost)

4.2. Normalisasi Matrik

$$r25 = \frac{0.80}{Max(1,0.80,0.20,0.50,1)} = \frac{0.80}{1} = 0.80$$

$$r31 = \frac{0.80}{Max(1,0.80,0.80,0.80,0.1)} = \frac{0.80}{1} = 0.80$$

$$r32 = \frac{0.50}{Max(1,0.50,0.80,0.50)} = \frac{0.50}{1} = 0.50$$

$$r33 = \frac{0.20}{Max(1,0.50,0.20,1,1)} = \frac{0.20}{1} = 0.20$$

$$r34 = \frac{0.50}{Max(0.80,0.50,0.50,0.80,0.80)} = \frac{0.50}{0.80} = 0.625$$

$$r35 = \frac{0.20}{Max(1,0.80,0.20,0.50,1)} = \frac{0.20}{1} = 0.20$$

$$r41 = \frac{0.80}{Max(1,0.80,0.80,0.80,1)} = \frac{0.80}{1} = 0.80$$

$$r42 = \frac{0.80}{Max(1,0.80,0.20,0.50,1)} = \frac{0.80}{1} = 0.80$$

$$r43 = \frac{1}{Max(1,0.50,0.20,1,1)} = \frac{1}{1} = 1$$

$$r44 = \frac{0.80}{Max(0.80,0.50,0.50,0.80,0.80)} = \frac{0.80}{0.80} = 1$$

$$r45 = \frac{0.50}{Max(1,0.80,0.20,0.50,1)} = \frac{0.50}{1} = 0.50$$

r51 =
$$\frac{1}{Max(1,0.80,0.80,0.80,1)} = \frac{1}{1} = 1$$

r52 = $\frac{0.50}{Max(1,1,0.50,0.80,0.50)} = \frac{0.50}{1} = 0.50$
r53 = $\frac{1}{Max(1,0.50,0.20,1,1)} = \frac{1}{1} = 1$
r54 = $\frac{0.80}{Max(0.80,0.50,0.50,0.80,0.80)} = \frac{0.80}{0.80} = \frac{0.80}{0.80}$

r55 =
$$\frac{1}{Max(1,0.80,0.20,0.50,1)} = \frac{1}{1} = 1$$

Dari perhitungan di atas diperoleh matriks normalisasi sebagai berikut:

$$\mathbf{R} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0.80 & 1 & 0.50 & 0.625 & 0.80 \\ 0.80 & 0.50 & 0.20 & 0.625 & 0.20 \\ 0.80 & 0.80 & 1 & 1 & 0.50 \\ 1 & 0.50 & 1 & 1 & 1 \end{pmatrix}$$

Memberikan nilai pada masing-masing kriteria sebagai berikut:

> W2=20%. W1 =35%. W3=15%. W4=15%, W5=55%. W = [0.35, 0.2, 0.15, 0.15, 0.15]

Selanjutnya hasil perangkingan atau nilai terbaik untuk setiap alternatif (V_t) dapat dihitung dengan rumus sebagai berikut:

$$V_{t} = \sum W_{i} R_{ij} \dots (1)$$

Maka hasil yang diperoleh sebagai berikut:

$$V_1 = (1)(0.35) + (1)(0.2) + (1)(0.15) + (1)(0.15) + (1)(0.15)$$

= 0.35+0.2+0.15+0.15+0.15

 $V_2 = (0.80)(0.35) + (1)(0.2) + (0.50)(0.15) + (0.625)(0.15) +$ (0.80)(0.15)

= 0.28+0.2+0.075+0.0938+0.12 = 0.77

 $V_3 = (0.80)(0.35) + (0.50)(0.2) + (0.20)(0.15) + (0.625)(0.15) +$

= 0.28 + 0.1 + 0.03 + 0.0938 + 0.03

= 0.53

 $V_4 = (0.80)(0.35) + (0.80)(0.2) + (1)(0.15) + (1)(0.15) + (0.50)(0.15)$ = 0.28+0.16+0.15+0.15+0.075

 $V_5 = (1)(0.35) + (0.50)(0.2) + (1)(0.15) + (1)(0.15) + (1)(0.15)$ = 0.35 + 0.1 + 0.15 + 0.15 + 0.15

= 0.81

Berdasarkan perhitungan di atas perangkingan hasil perhitungan dapat dilihat pada tabel di bawah ini:

Kendaraan	Kode	Rangking	Nilai	Keterangan
BE 9224 RA	A	I	1	SLJ
BE 9258 RC	В	IV	0.77	KLJ
BE 9523 RA	C	V	0.53	KLJ
BE 9434 RC	D	III	0.81	LJ
BE 9325 RB	Е	II	0.9	LJ

5. PENUTUP

5.1. Kesimpulan

Setelah melakukan analisis dan pengamatan secara langsung terhadap objek penelitian, maka penulis dapat menarik kesimpulan bahwa sistem pendukung keputusan yang dibangun menggunakan metode SAW dan dari perhitungan SAW diperoleh hasil antara lain: kendararan yang Sangat Laik Jalan BE 9224 RA dengan nilai 1, kendaraan Laik Jalan BE 9325 RB dengan nilai 0.9 dan BE 9434 RC dengan nilai 0.81, sedangkan yang Kurang Laik Jalan BE 9258 RC dengan nilai 0.77 dan BE 9523 RA dengan nilai 0.53.

5.2. Saran

Karena dalam proses pembuatan/ perencanaan sistem penunjang keputusan ini masih ada kekuranganya dan masih jauh dari sempurna. Saran-saran yang diajukan untuk pengembangan berikutnya antara lain:

- Untuk diuji tingkat keberhasilan metode SAW (Simple Additive Weight) ini harus dilakukan pada beberapa daerah yang berbeda dengan nilai parameter kriteria untuk tiap alternatif yang berbeda pula dihitung sehingga dapat tingkat keberhasilan metode ini dengan hasil di lapangan.
- Penelitian lanjutan juga dapat dilakukan dengan mengintegrasikan sistem penentuan kelaikan kendaraan yang ada sehingga terlihat nyata.

DAFTAR PUSTAKA

Atmosudirjo. 2013. Sistem Penunjang Keputusan. Bandung: Graha Media

Davis. 2010. Konsep Sistem Penunjang Keputusan. Yogyakarta.

Follet. 2012. Sistem Pakar menentukan Bibit Karet terbaik dengan Menggunakan Metode SAW.

Hermawan. 2013. Sistem Penunjang Keputusan menentukan Beasiswa dengan Menggunakan Metode SAW.

John. 2011. Sistem Penunjang Keputusan dalam Pemilihan Kendaraan Bermotor Terbaik di Kabupaten Pringsewu.

- James. 2013. Sistem Penunjang Keputusan dalam Menentukan Nasabah Peminjam dengan Metode SAW. Bandung
- Kusumadewi. 2012. Penerapan Metode SAW dalam Menentukan Karyawan Terbaik. Bandung
- Bandung
 Undang-Undang Nomor 22 Tahun 2009 Lalu
 Lintas. Jakarta