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1.0 INTRODUCTION

Fractional order Across many different branches of science and engineering, differential
equations have recently proven to be useful tools for modeling a wide range of phenomena.
The domains of control, porous media, electromagnetism, etc. all have applications (see [1]-
[4]). The most popular fractional derivatives are Caputo and Riemann-Liouville derivatives,
while various scholars have defined many more types of fractional operators. A new derivative
was recently defined by Caputo-Fabrizio in [5]. This issue is diminished by Atangana and
Baleanu [é]. a derivative based on the generalized Mittag Leffler (ML) function The fractional
derivative of the Atangana-Baleanu (AB-derivative) is known as this. This derivative describes
several types of dissipative events because of the nonsingular and nonlocal behavior of the
AB-derivative kernel. Various models of dissipative events are described by this derivative. The
nonlocality and nonsingularity of the kernel offer a more comprehensive solution to the
memory under development at various scales. The development of FDEs connected to ABC-
derivatives was hugely affected by academics. their application to the mathematical
modeling of issues involving dynamical systems, heat flux, fluid fluxes, and electrical circuits. [7],
[8]. Theoretical modeling of crystaline materials has frequently used periodic boundary
conditions (PBCs). Condensed matter computations may easily implement boundary
conditions using PBCs. Unified numerical fechniques that consider both periodic and periodic
systems are possible [9].

In this paper, The ABC-fractional differential equations with periodic boundary conditions that
are being considered as follows:
(“PEDEx) (@) +u(®)x(t) = f(t,x(1)),
2<a<3,te[0,T], T>0 (1.1
with
x(0) = x(T),x'(0) = x'(T),x"(0) = x""(T). (1.2)

On the other hand, the theory of fractional differential equations places a premium on the
existence of a solution and uniqueness. Additionally, the solution's stability is just as crucial as its
existence because an unstable solution is ineffective and might not deliver the necessary data
for the stated area. The differential equation stability problem was put up and studied by Ulam
and Hyers [10]-[12]. Between 1978 and 1988, Rassias demonstrated the Ulam-Hyers stability of
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both linear and nonlinear mappings [13]. Ulam-Hyers and Ulam-Hyers-Rassias stability for
fractional differential equations are discussed in [14]-[17].

There are four sections in this paper. AB fractional calculus definitions and theorems are
presented in Section 2. Two subsections make up Section 3. In the first, investigate the existence
of solutions using Schauder's fixed point for the problems (1.1)-(1.2), and then use the Banach
fixed point theorem fo show that the solution is singular. In section 4, use Hyers-Ulam stable to
assess the stability of the solution. To further our objectives, we employ examples.

2.0 METHODOLOGY
Mathematical Tools
In this section, we will go over several preliminaries that will be important in the next sections.

Definition 2.1 [¢]. Let A € [0,1] , ¥’ € H'(a, b), where a < b, then the Caputo AB-derivative is

@repro) () = 24 [t 9'(5)E; [-1 2] as.

Where E; is the Mittag-Leffler function, B(1) is a normalizing positive function satisfying B(0) =
B(1) = 1.

The associated fractional integral of the Caputo AB-derivative is defined by

(871%9)(®) = 5590 + 555 (61*9) ().

Where ,I* is the left Riemann-Liouville fractional integral.

Theorem 2.2:[18] for x(t) defined on [a,b] and a € (m,m + 1], for some m € N, we have
1. (“PRDg “PIE) (x (1)) = x ()

2. (PI§APEDE)(x(D) = x(t) — Tt T2 (¢ — a)”

3. ("I CDE) (x()) = x(8) — Tito =2 (¢t — )"
Theorem 2.3: [19] Arzela Fixed Point Theorem. Let w be a compact Hausdorff metric space.
Then ¢ c M(w) is said to be relatively compact whenever ¢ is equicontinuous and bounded

uniformly.

3.0 RESULT
Main Result
In this section, we use Krasnoselskii's and Banach's fixed point theorems to establish the
existence and uniqueness of the problem (1.1) — (1.2). First, we prove the following lemmas,
which are critical for obtaining existence findings.
Lemma 3.1: Let 2 < a < 3 and x € C([0,T], R) we have.

1. (4218 #5eDE)(©) = (1300 —Sx'(0) = ex(0).
2. (418 45D 20)(6) = (21 1)(©) — S x(0).
Where (“B1tx)(t) = fotx(s)ds, (“B12x)(t) = fot (t — s)x(s)ds.

Proof (1). By using Theorem 2.2., we get

( ABI((]Z ABCD(()Z—lx)(t) — A311 (ABIgc—l ABCDS"lx)(t).

(415 45 D) () = 4212 (x(2) — oo T2 (£ — 0)¥).
(4818 45CDg1x)(6) = (“FIx) () — A1 (x(0) + tx'(0)).
(I 47D ) (1) = (PI)(E) — tx(0) — S x'(0),
Proof (2): By using Theorem 2.2., we have

(ABIgc ABCDg_ZX)(t) — ABIZ (AB[(()Z—Z ABCDg_ZX)(t).

(41§ 45 DE-2x) () = 4212 (x(t) — e T2 (¢ — 0)F).
(481§ A5 DE—2x) (8) = (“B12x)(8) = “P13(%(0)).
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(4B1§ 45€ DF-2x)(6) = (48 13x)(6) — S x(0).
Lemma 3.2: for x(t) defined on [a, b], a function x(t) is a solution of
(YBEDEX)(t) = f(t), m<a<m+1 3.1
with x(a) = ¢;,x'(a) = cpy e, x™ =, p4, t € [a,b] 3.2)
if and only if x(t) is the solution of the following integral equation

x(t) = (6 — @) + G (L [0 (e = )M f(5)ds) 4 s [ (6= )% f(s)ds.

Proof. As a s’rcrmg point, we provided associate integrals for both side of the equation (3.1)
(4BIZ 4BCpIY(x () = “BIZ(f(t))  using Theorem 2.2. for the left side, we get.

x(8) — Tt %(t—a)k = ().
x(0) ~ S 2 (¢ — a)k = 1 (4B 18 f (1)),
Now we use The associated fractional integral of the Caputo AB-derivative for right side, we

have.

x(t) — Xkto m(t—a)"=1m(1 @) £(t) +

k! B(a—m)

1)),
(m+1) a

x(6) = T T2 (¢ — @) + B (L8 (¢ — sy (s)ds) + 5l [ (- )T (5)ds.
Theorem 3.3. Let u,f:[0,T] = R be a confinuous function and a function x(t) is a solution of
the following ABC-fractional.

(“BEDEx)(E) + u(t) x(t) = f(t,x(t)), 2<a <3, t€[0,T], T >0 and Aand C are non-zero positive

numbers with

x (oc)

(d m)

x(0) = x(T),x'(0) = x'(T),x"(0) = x"(T).
if and only if x(t) is the solution of the following integral equation:

x(t) = f G(t,s)f (s, x(s))ds +f u(t, s)x(s)ds + ﬁ f(T,x(T)), u(t) #0

Where G(t,s) and u(t,s) are green functions.

<)<(3_ D r_g272 (T—s)“—l)

B(a —2) p(a—2)T(a)
(TN 3 —a) (@ —2) o
_< 2T )(B(a—Z)+,8(a—2)F(a—1)(T_S) )

(a—2) o
<u(T)(3—0()F(0(—2))(T_S) 3 ift<s<T

G(t, s) = { B-a (a—=2) w1
“ ()(ﬁ(a =)+ = ram T~ )
(t(t—T))<(3—a)+ (a—2)

pla—2) pla—-2)T'(a—1)
+< (@-2) )(T—s)“'3+

u(MB—-—a)T(a—-2)

B-a) (a—2)
DR R )

(r-52)

(t—9s)1 ifo<s<t

also,
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u(,s)

t (a—2) e B-a)
-(7) <_ﬁ(a—2)F(a) T ="l ~ pg )(T_S)“(S))

t(t—T) ((X—Z) o ( - ) (a—2) .
( 2T )( Bla—2Dra—n" “u(s) - Ba—"C )) ((T)(3—a)F(a—2)>(T_S) 3u(s),

ft<s<T

= t (a—2) o B-a
— (7) <— ﬁ—(a — @) (T —s)* u(s) — Ba—2) (T - s)u(s))

(e —T) (@-2) . G- @—2) B
( 2r ><_ pa—ara-n 0 VO m“”) ' <u(T)(3 N 2)) (T = )*u(s)

_ (@-2) B-a)
Bla —2)I'(a) Bla—2)

(t —s)* tu(s) — (t — s)u(s), ifo<s<t

Proof. We have

(“BEDEx) () + u(t) x(t) = f(t, x(1))

By using Lemma 3.1 and Lemma 3 2, we get

x(t) = x(0) + tx'(0) + = x”(O) + 3((3“ "‘2)) (f5&=)f(s,x(s))ds = f, ¢ —)u(s)x(s)ds) +
(a-2)

el NG s)“‘l fsx())ds = [, (t = )% u(s)x(s)ds) (3.3)
The first derivative and second derivative of (3.3)

x'() = x'(0) + " (0) + ([ f(5,2())ds — [ u(s)x(s)ds ) +=— ([ (t—

B(a-2) B(a=2)r(a-1)
)92 (s,x())ds — [, (t — )% 2u(s)x(s)ds) (3.4)
and
X(0) = = =D u()x(0) - (1) tu()x'©) + (1 - (D) S u()) 2" (0) + o f (£, x(2)) +

(a-2) (fo (t — s)“‘3f(s,x(s))d5 — fot (t— S)“‘3u(s)x(s)ds) - ( G-a) )2 u(t) ( fot (t-

B(a—2)I'(a—2) Bla-2)
B-a)(a-2)

s)f(s,x(s))ds — fot (t— s)u(s)x(s)ds) — (3(a—z)2r(a)u(t) ( fot (t— s)“'lf(s,x(s))ds - fot (t —

)% u(s)x(s)ds) . (3.5)
Now, using periodic boundary conditions (PBCs) with necessary f(0) = u(0)x(0), obtained
that

(f (T — ) 3f(s,x(s))ds —f (T —s)%~ 3u(s)x(s)ds) +— f(T,x(T)).

u(T) 3- Ol) T'(a-2) (T)

x'(0) = — &2 (fOT (T — ) f(s,x(s))ds — fOT (T — s)“‘lu(s)x(s)ds> + &(fg (T —

3B(a-2)I'(a) 2B(a-2)T(a-1)

$) 72 (s,x(s))ds — fOT (T — 5)%2 u(s)x(s)ds) — (2;3(2)2)) (foT (T —5)f(s,x(s))ds —

fOT (T -5 u(s)x(s)ds) + 2;3(;2) (fOT f(s,x(s))ds — fOT u(s)x(s)ds) (3.7

and

x"(0) = —M(L}T (T — )% 2f(s,x(s))ds — fOT (T —5)*2 u(s)x(s)ds) +

6B(a—2)I(a-1)

B 31(33(;?)2) (o flsx()ds = J; u@x(s)ds). (38)

Putting the values of x(0), x'(0) and x"(0) in equation (3.3), we get

x(®) = — (4 “‘”)( €D (1 (T~ )" 2f(5,x(s))ds — [ (T —5)*2 u(s)x(s)ds)> -

2T Bla—2)I(a-1)

(é) (ﬁ(:f;)zr)(a) (foT (T =) f(s,2())ds — f (T - S)a_lu(s)x(s)ds)) - (i) <;(3;_“2)) (fOT ¢
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u(T)B-a)(a-2)

$)f (s, x(s))ds — fOT (T -5) u(s)x(s)ds)) + L([J (T — ) 3f(s,x(s))ds — fOT (T -

9t ux(s)ds) — (H0) (M(foT f(s,x())ds = [} u(s)x(S)ds)) oo (G-

2T B(a-2)
$)f (s, x(s))ds — ft(t - s)u(s)x(s)ds) ﬁ(;az)zr)(a) (f (t = $)* ' f(s,x(s))ds — fo (-
$)% u(s)x(s)ds ) +ﬁ F(T,x(T) u(t) #0

After simplifications and replacing the value of G(t,s) and u(t,s)

x(t) = f G(t,s)f (s, x(s))ds +f u(t,s)x(s)ds + H f(T,x(T)).

This proves the theorem ]

In order to prove our point, we make the following assumptions.

Let ¥, = €([0,T], R) denote the Banach space of all contfinuous functions x: [0, T] — R with

norm ||x|| = sup |x(t)].
te[o,T]

Assume that v t € [0, T] the following assumptions hold.
@) — (& x@) < Klxg —x2]. K>0
@@ <pOQ@ + |xD). p(t) € Py
A3 s u(t) is bounded function, then there exists constant number A > 0 such that |u(t)| <1,
€[0,T]
Ay s A<, Q=M,.

o 2, 2AB-a)T? | Aa+2)(a—2)T* AMa—2)T* 2
My = 24T +2CT" + Bla-2) Bla-2)T(a+1)  |u(M)|B-a)(a-1)

3.1 Schauder’s Fixed Point

In this section, we use Schauder’s fixed point theorem. We start with the following theorem.
Theorem 3.4. [22]. (Schauder's fixed point) Let X be a Banach space, S be a bounded closed
convex subset of X and N: S - S be a compact and continuous map. Then N has at least one
fixed pointin S.

Theorem 3.5. Assume that all assumptions(4,), (4,) and (4;) hold. Then the problem (1.1) — (2.2)
has at least one solution on [0, T]

Proof. Consider f5,, = {x € Y,: ll x I< 12} where v = max{M,(|[p]D} and

2B3-0)T? | (2+a)(a-2)T? (a—2)T*2 1

M, = Ba-2) ' Bla-2)F(a+1) ' [uMIG-a)(a-1) ' |lu@l’
v

= 1-(v+Ky)"

K = 2A(3-a)T? = A(a+2)(a—2)T* AMa—-2)T* 2

L7 Ba-2) Bla-2)T(a+1)  |uw(T)| B-a)(a-1)’

Now we defined operator N on f,,

(Nx)(t) = — (t (t_T)) ( (a-2) (fOT (T — ) %f(s,x(s))ds — fOT (T — 5)%2 u(s)x(s)ds)) -

2T B(a—2)(a—-1)
(%) (% (foT (T =)' f(s,x(s))ds — ng (T - S)a_lu(s)x(s)ds>) ( ) <ﬁ((3a az)) (f (-

$)f(s,x(s))ds — fOT (T -5 u(s)x(s)ds)) + L(J‘: (T — ) 3f(s,x(s))ds — fOT (T —

u(T)(3-a)l(a—-2)

9> us)r(6)ds) = (52) (L% (7 £(5x60)ds - I uohx(s)as) )+ 2 (e -

2T Bla-2)
$)f(s,x(s))ds — f (t— s)u(s)x(s)ds) (;az)zl_)(a) (f (=) f(s,x(s))ds — fo (t—
)" u($)x(s)ds) + o £(T,x(T).
INx|| = sup [(Nx)(t)].
te[0,7]
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INx|| =

() (e (] o xhs— ] T woncos))
(5) (ﬁ(z;)zr)(a) (foT (T —5)* ' f (s, x(s))ds — [, (T - s)a—lu(S)x(s)dsD - G) Gi:z)) (foT -

$)f(s,x(s))ds — fOT (T-59) u(s)x(s)ds)) +

(a-2)
u(T)B-a)T(a-2)

() =9 f(s.x)as - f; (T -

5)e3 u(s)x(s)ds) - (t (;;T)) <;(3;12)) (fOT f(s,x(s))ds — fOT u(S)X(S)dS)) + ;(3;12)) ( fot (t-

t (a-2) t _ t
s)f(s,x(s))ds - fo (t - s)u(s)x(s)ds) + ﬁ(a(jz)r‘(a) ( fo (t—s)“ 1f(s,x(s))ds _ fo (t -
-1 *
$)%Mu(s)x(s)ds) + 5 f( T,x(T))‘.
2(3-a)T? | (2+a)(a—2)T% (a=2)T% 2 1 2A(3-a)T? | Ala+2)(@—-2)T*

Nl = (G255 + famrers * i amoras + ) (1PN +720) +

_ a—2
T Goorias) 2l
INx|l < My (llpll(1 +72)) + Kq7y

IN|| v+ @+ K)n,

INx|| <7,

This shows that N is a self-mapping

Next, we'll go through two steps to prove that N has a fixed point using Schauder's fixed point
theorem.

Step1: N:B,, = f,, is continuous

Let {x,}nen D€ O sequence such that x,, - x in B,

Then, for all t € [0,T], we have

|(Nx) () = (Nx) ()] = ‘— (<2 (B(af;‘;él_l) (fy (T =9)%2f(s,xa(s))ds = f; (T —

B(a-2) B(a-2)T(a+1)

5)%2 u(s)xn(s)ds)> - (ﬁ) (Noff;)zr)(a) (fOT (T —$)*1f(s,x,(s))ds — fOT (T — S)“'lu(s)xn(s)ds)> -

(%) (B((Sa_fz)) (foT (T = $)f(s,%,(s))ds — fOT (T —5s) u(s)xn(s)ds)) + % (IOT (T —

) f (s, 2a())ds =[] (T = )" w()xn(s)ds) — (57 (;f;f’j) (o F(sxa(s))ds -

fOT u(s)xn(s)ds)> + % ( fot (€ = 9)f (s, %,(5))ds — fot (t— S)u(s)xn(s)ds) + ﬁ(f:)zlf(a) ( fot (t —

) (5, x0())ds = [ (£ = ) USx(5)ds) + 2o f(T,x(T)) = (— (=2) (B(af‘;‘;;;_l) (-

$)*72f (s, x(s))ds — fOT (T —5)*2 u(s)x(s)ds)) - (%) <ﬁ(::)zr)(a) (fOT (T —)*f(s,x(s))ds — fOT (T —

S)a—lu(s)x(s)d5)> - (%) (;(3;"2)) (foT (T —s)f(s,x(s))ds — fOT (T —s) u(s)x(s)ds)) +

(a-2) (foT (T = )3 f(s,x(s))ds — [ (T —s)*~3 u(S)x(S)ds) -

u(T)B-a)l(a-2)

(t (;;T)) (;(3;_(12)) (fOT f(s,x(s))ds — fOT u(s)x(s)ds)) + /3((3;12)) ( fot (t—9)f(s,x(s))ds — fot (-

Yu(s)x(s)ds ) + =2 ([ (= )% f(5,x(5))ds — [ (¢ = $)*  u(s)x(s)ds ) + — f( T,x(T)))

B(a=2)T(a) u(T)
2B3-a)T? | 2+a)(a—2)T% (a—2)T* 2 1 2A(3-a)T? | AMa+2)(a—2)T%
— <
(V) (1) = (N ()] = <( Bla-2) + Bla-2)r(a+1) + [u(T)| (3-a)(a-1) + Iu(T)I) K+ B(a-2) B(a-2)T(a+1)

A(a—2)T¥ 2
—mmug_@r(a_l)) (12 () = x(®)]).

1JISCS | 36



Therefore, obtained that
[(Nxp) () = (N ()] < 2112, () — x(D)].

[ (26-0)T?  (@2+a)(a-2)T% (a—2)T%"2 1 2A(3-a)T?  A(a+2)(a—2)T*
Where Ay = (( fa-2) | Bla-2)T(@+D) ' (") G-a)F(@-1) |u(r)|) e T Baor@rn
Aa—2)T¥ 2
[w(MIB-a)l(a—1)

Taking sup over [0, T] we get,
INx, — Nx|| < A4 11x, — xI.
Therefore, N is continuous.

Step2: N(B,,) is bounded and equicontinuous.
Since N(B,,) < B, and B,, is bounded. Then N(B,,) is bounded.
N it is continuous. Then we define sup |f(t,x)| =

te[o,T]

Let t; and t, belongs to [0,T] and x € B,

(N () — (Nx) (8)] = |- (22 <B<aff>}2(l_1) (Jy T =9)%2f(s,x(s))ds - f; (T —

5)* 2 u(s)x(s)ds)) (tl) (ﬁ(;az)zg(a) (f (T — ) f(s,x(s))ds — fOT (T - s)“‘lu(s)x(s)ds)> -

(2) (;(3;_“2)) (7 @ =9)f(s.x())ds — J] (T ~s) u(s)x(s)ds)) @D (T

(M@B-a)r(a-2)

2T Bla-2)

$)*73f (s, x(s))ds — fOT (T —s)%3 u(s)x(s)ds) - (M) ( G-a) (fOT f(s,x(s))ds —

Iy u(s)x(s)ds)) s (Jo" 1 = )f (5,x())ds = [ (02 = u()x()ds) + 50 ([ (02 =

)% f (s, x())ds — [ (& = $)* M u(s)x(s)ds ) + —— F(T,x(T)) - (—(”“2‘”)(B “D (-

u(T) 2T (a-2)T(a—1)

)% 2f(s,x(s))ds — [ (T — )% Zu(s)x(s)ds)) (2 )(%(IJ (T = )% £ (5, x(s))ds — f (T —

S)a—lu(s)x(s)ds)> - (%Z) (;(3;12)) (fOT (T —s)f(s,x(s))ds — fOT (T =) u(s)x(s)ds)) +
D (f) (T = )% f(s,x())ds = [y (T = )% u(s)x(s)ds) -

(=222 ( () Flsxe)ds = ) u(s)x(s)ds)) F (17 6 =9 (s x(9))ds = 37 (t -

Bla-2) B(
s)u(s)x(s)ds) + B(a%_)zr)@ ( fotz (t, — ) f (s, x(s))ds — fotz (t, — s)“‘lu(s)x(s)ds> +
= [ T.x(T)>)|.

Therefore, we find that

[(Nx)(t1) — (Nx) ()] < (S; + Sty — tol + (Sy + So)It7 — 2] + (S5 + Se) 6% — t,%].
_ (AMB=a)T | Ma+2)(a—2)T* 1 _ (AB-a) ;| Ma-2)T*2

Sy = (B(a—z) 2B(a-2)I(a+1) ) S = (B(a—z) ZB(a—Z)F(a))
_ (G- (a—2)T*"2 _ (B-)T | (a+2)(a-2)T*"!

S3:= (3(0:—2) ZB(a—Z)F(a)) D, Sy = (B(a—z) ZB(a—Z)F(a+1))

= (2 G
Ss 1= (B(a—z)l"(a+1)) Dand S = (ﬂ(a—z)r‘(oc+1)) T2

Which is independent of x and tends fo zero as t, — t; thus, N is relatively compact on gr,.
Hence, by Arzela-Ascoli Theorem, N is compact on Br,, thus all the assumptions of the theorem
are safisfied. Hence the PBC’s (1.1) — (1.2) has at least one solution on [0, T].
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3.2 Banach fixed point

In this part, we provide a unique solution to the problem (1.1) — (1.2). One of the most
fundamental theorems is the Banach fixed point theorem. The most important aspect of any
mathematical model is the unique solution; more than one solution might be meaningless and
may not offer the necessary information. We begin by recalling Banach's fixed point theorem.
Theorem 3.6. [20] (Banach's fixed point theorem). Let ¢ be a non-empty closed subset of a
Banach space X. Then any confraction mapping G of g into ifself has a unique fixed point.
Theorem 3.7. Assume that (4;) and (4;) . ¢ < 1 hold. Then the problem (1.1) — (1.2) has a unique
solution.
Where ¢ = (M,K + M,)

Proof. Let us set sup |f(t,0)| <n and consider B, ={x ey, I x I<r}, whenr > 1212 and
te[0,T] 5,
_ (2B-)T*  (+a)(a-2)T" (a—2)T*2 1 _
= (S * e * moia-ores * o) 1 & = MK+ M,

We show that H(B,) c B, where H: 1, - ¥,
For x € B,. we have

() (2 (7 =595~ 79 ux(9s)) -

IHx|l = ‘

) (2 (] 7 texhis— ] =y ons) - ) (523 -

$)f(s,x(s))ds — fOT (T -5 u(s)x(s)ds)) + L([OT (T = )% 3f(s,x(s))ds — fOT (T —

u(T)B-a)T(a-2)

9 3 u(s)x(s)ds) - (H£2) (;f;i‘; (1 F(sx())ds = f u(s)x(s)ds)) = (fo -

s)f(s x(s))ds — f (t —s)u(s)x(s)ds) (a 2) (f (t— )“'1f(s,x(s))ds - fot(t -

a-2)T'(a)

$)*u(s)x(s)ds) + o f(T, x(T))H

We consider

[f(t.x®)] = |f(&,x(@®) = f(£,0) + £(£,0)]
<|f(tx®) = f&0)] + £ (t, 0]
<Kl|x|+n

Therefore, obtained that

2(3-a)T? | (2+a)(a-2)T% (a—2)T%"2
”Hx”S(ﬁ(a—m Bla-2)T(a+1) |u(T)|(3—a)r(a—1)+|u(T)|)

(Kr +n)+M,r

IHxIl < (MK + Mp)r +§) <7
H is a self-mapping on B,.

Now forx,y € B, and v t € [0,T], we consider

|Hx — Hyll =

() (s (0] =0 e ] =9 uncons)) -

() (s (07 sy x)as 7 sy rurncoas)) - () (S -

$)f(s,x(s))ds — fOT (T —5) u(s)x(s)ds)) + L(ﬂ (T — ) 3f(s,x(s))ds — fOT (T —

u(T)B-a)T(a-2)
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$)*3 u(s)x(s)dS) - (t (;;T)) ( ((30, az)) (f f(s,x(s))ds — f u(s)x(s)ds)) ((3a az)) (f (-

s)f(s,x(s))ds - fot (t - s)u(s)x(s)ds) + ﬁ(a((j%)zr?(a) ( fot (t - 5)“‘1f(s,x(s))ds — fot (t—

$)* u()(5)ds) + o= F(T,x(T) = (— (=2 (B(af‘;}ﬁ,_l) (fy @ =9)%2f(s,y(s))ds — [y (T -

5)*2 u(s)y(s)ds)) (t) (ﬁ(:az)zr)(a) (f (T =) (s,y(s))ds — fOT (T - s)“_lu(s)Y(S)ds)> —

() ( S (fy T =9)f(sy))ds =y (T =s) u(s)y(s)ds)) +o—D ([ (T -

B(a-2) u(T)B-a)(a—2)

2T

)% f(s,y())ds = [ (T =) u()y(s)ds) — (“E2) (;ﬁ;‘; (f) Flsy)ds - f; u(s)y(s)ds)) +

B-a)
B(a-2)

(f5 =9 (s y()ds =[5t = Du©)y()ds) + 22 ( [y (¢ =) f(s,9())ds = [ (¢ -

$)* M u($)y($)ds) + s F(T,9(T) )”

Hence, we get
IHx — Hyll < (MK + My)llx — .
lHx — Hyll < §llx — yll.

Since & <1, by the Banach fixed point theorem, we get unique solution of (1.1) — (1.2).
| |

4.0 CONCLUSION

In this section, our purpose is to find stability fo the problem (1.1) — (1.2). We use the Hyers-Ulam
stable. The notes and definitions that follow will be beneficial for our primary result.

Definition 4.1.[21]. The problem (1.1) — (1.2) is said to be Hyers-Ulam stable if there exists a real
number b > 0 such that for each € > 0 and for each solution 9 € i, of the inequality
| (D)) +u(®) 9(t) — f(& I <€ VEEOT] (4.1)
3 a solution x(t) € Y, s.t
[9(t) — x(t)| < be, Vt€[0,T] (4.2)
We can write the solution x(t) € ¥, the problem of (1.1) — (1.2) as
x(t) = fOT G(t,)f (s, x(s))ds + fOT u(t, s)x(s)ds + %f(T,x(T))
Remark 4.2.
lut,s)|<b and, [G(t,s)| < M.
Remark 4.3. A function 9(t) € Y, is a solution to inequality (4.1)
If and only if 3 a function ¢ € ¥, such that
L K@l <e
Il (4BEDEOY(t) + 19(t) = f(¢,9(1)) + {(t), VteE[O,T]
Theorem 4.4. Suppose that u,f:[0,T] x R— R is a continuous function. Safisfying Lipschitz
condition (4;). If (|u(T)IM;TK + |u(T)|bT + K) # [u(T)|. Then the problem (1.1) — (1.2)is Hyers-
Ulam stable.
Proof.
Let x(t) € o any solution to inequality
| (PP€DEx)(8) +u®) x(t) — f(t, x| <€
vte[0T]
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Using remark 4.3, we have
(#BEDEx) () + u(®) x(t) = f(t,x(8)) + (1)
x(t) = fo G(t, s)f(s,x(s))ds + J; u(t,s)x(s)ds + ﬁf(T x(T)) + J. G(t,s){(s)ds + EC(T)

|x(t) - fOT G(t,)f(s,x(s))ds — fOT u(t,s)x(s)ds — ﬁf(T x(T))| < M;Te + ——

Now let y(t) € i, be a unique solution of fractional PBCs (1.1) — (1.2)
We consider

() =y (O = |x(6) = [ Gt 5)f (5, y())ds = [, u(t,$)y(s)ds — — F(T,y(T))].

u(T)

[u (T)I

x(t) = [ G(t,5)f (s, y(s))ds — [ u(t,)y(s)ds - ﬁf(T y(D) +

(f G(t,s)f(s,x(s))ds +f u(t, s)x(s)ds + ﬁf(T x(T))) - (fOTG(t, S)f(s,x(s))ds +

lx(®) —y@®| =

f u(t, s)x(s)ds +—f(T x(T))>|

u(T)
Ix(t) —y(©)| < M;Te + ——e + |f G(t,s)f(s,x(s))ds —f G(t,s)f(s,y(s))ds +f u(t,s)x(s)ds —

lu (T)I
[y u(t,9)y(s)ds + F)f(T x(1)) = o= £ (T, y(D))|-
x(®) = y(O < MyTe + e+ MTK () = y(O + BT1x(®) = y(O)] + i Klx(T) = y (D).
Taking sup over t € [0,T] or alternatively |[x|| = sup [x(t)| .we get
lx = ¥l < MyTe + e + MiTK llx — yll + BTllx — yn + s Kllx =yl
(lw(D)IMfT+1)e
—y| <
lbe =yl = (Iu(m)l=(1u(T)IM T +{u(T) BT +K))
_ (lu(m)IMT+1)
(le(m) 1= ()M TR+u(T)BT+K) )’
llx =yl < be
Therefore the problem (1.1) — (1.2) is Hyers-Ulam stable. [ ]

Example. Consider the ABC-fractional PBCs
1
(“BEDE1x) () + —— (t + D)x(t) = f(t, x(D))

1000
,2<a<3,tel03], where f(tx(t))= ——e *x(t)

With periodic boundary condifions x(0) = x(3),x'(0) = x'(3),x"(0) = x"'(3).
Here obtain that, a = 2.1. T =3,

u(t): = ﬁ(t+ 1), u(0) _M A =:max|u(®)| = 7505
—_ - —4-t
f(t x(t)) T000+¢ ¢ x(©), f(0) = 1000x(0)
1
Since [f(t,x, (1)) — f(t, %)) < 1000I 1= %, K=
= 302.4396 ,Q:=M, =0.2097 <1,
B-a)T? | (2+a)(a—2)T% (a=2)T%2 1
Where M, =2
ere M= e T heor@n | uml G-ar@-n | um)
M. = 2AB3-a)T? . Aa+2)(a-2)T% Ma-2)T* 2
27 Bla-2) Bla-2)M(a+1) | |[u(DIB-a)(a-1)

Therefore § = MK + M, = 0.5122 < 1, ([u(T)|M;TK + [u(T)|bT + K) # |u(T)|, hence all conditions
of the theorem 3.5 and theorem 3.7 are satisfy. As a result, the above PBCs are Hyers-Ulam
stable and have a unique solution.
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