MONITORING LAND SURFACE CONDITION TOWARD PESAWARAN DISTRICT USING WATERSHED SEGMENTATION METHOD

Ida Ayu Puspita Sari(1), Suhendro Yusuf Irianto(2),


(1) Magister Teknik Informatika, Institut Informatika dan Bisnis Darmajaya, Lampung
(2) Magister Teknik Informatika, Institut Informatika dan Bisnis Darmajaya, Lampung
Corresponding Author

Abstract


This research will produce a segmentation using watershed segmentation. This method will be used to segment the aerial image of an area in Pesawaran district. The image of Pesawaran district that will be taken is an image for the past 5 years, more precisely the image from 2015-2019. The accuracy of this experiment will be tested using a method called ROC (receiver operational characteristics) and studying the changes in the land surface from year to year using watershed segmentation, then the image will change into a color pattern that represents each area such as forest areas and human settlements.

Keywords


segmentation, Watershed, Monitoring, ROC

References


Putra, Darma. (2016). Pengolahan Citra Digital. Yogyakarta. Penerbit : Andi.

Kapas, 2017. “segmentasi Watershed untuk memonitoring pertumbuhan panjang kecambah”. Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau.

Yohannes , 2016. “Building Segmentation of Satellite Image Based on Area and Perimeter using Watershed”. Second Edition, Prentice Hall, New Jersey

Panorama et al., 2019. “Perbandingan Metode Segmentasi K-Means Clustering dan Segmentasi Watershed untuk Pengukuran Luas Wilayah Hutan Mangrove” Volume 78, Number 2, Pages 397 – 411

Adipranata Rudy, Andreas Handojo, Ivan Prayogo, Oviliani Yenty Yuliana (2015) , Perancangan dan Pembuatan Aplikasi Segmentasi Gambar dengan Menggunakan Metode Mophological Watershed, Jurusan Teknik Informatika-Universitas Petra.

Byung-Joo Oh. (2015). Face Recognition using Radial Basis Function Network based on LDA. World Academy of Science, Engineering and Technology 7 ,pp.255-259

Theodoridis S dan Konstantinos Koutroumbas. 2016. Pattern Recognition Third Edition.Academic Press. UK.

J. Han and M. Kamber (2016), Data Mining: Concepts and Techniques, Second ed. San Fransisco: Elsevier. 87


Full Text: PDF

Article Metrics

Abstract View : 191 times
PDF Download : 43 times

DOI: 10.56327/jurnaltam.v11i2.956

Refbacks

  • There are currently no refbacks.