IMPLEMENTASI SUPPORT VECTOR MACHINE PADA ANALISA SENTIMEN TWITTER BERDASARKAN WAKTU

Faisal Rahutomo(1), Imam Fahrur Rozi(2), Haris Setiyono(3),


(1) Politeknik Negeri Malang
(2) Politeknik Negeri Malang
(3) Politeknik Negeri Malang
Corresponding Author

Abstract


Sentiment analysis is one branch of science from data mining that aims to analyze, understand, process, and extract textual data in the form of opinions on entities such as products, services, organizations, individuals, and certain topics. In determining positive, negative or neutral categories, a public response on twitter can be done manually by reading each tweet. This certainly requires a lot of time and takes a lot of energy. In this study using the Support Vector Machine classification algorithm to classify tweet data into positive, negative or neutral sentiments. Analysis is carried out based on a certain time span, because each time can have a different topic of discussion and from the results of these data can be seen the development of sentiment trends and can be seen how the public response to a particular topic. The tweet data is obtained by crawling periodically with the target keywords of the names of candidates and vice president in the 2019 election. The dataset used in this study uses 600 tweets. In testing the classification using k-fold cross validation by dividing into 10 data parts, average value of 66% accuracy, 67% precision and 66% recall.


Keywords


Sentiment analysis is one branch of science from data mining that aims to analyze, understand, process, and extract textual data in the form of opinions on entities such as products, services, organizations, individuals, and certain topics. In determining

References


S. Kemp, “Digital in 2018 in Southeast Asia,” We Are Soc., p. 362, 2018.

S. Adi, “Perancangan Klasifikasi Tweet Berdasarkan Sentimen Dan Fitur Calon Gubernur DKI Jakarta 2017,” J. Inform. Pelita Nusant., vol. 3, no. 1, pp. 10–16, 2018.

F. Rahutomo, P. Y. Saputra, and M. A. Fidyawan, “Implementasi Twitter Sentiment Analysis Untuk Review Film Menggunakan Algoritma Support Vector Machine,” J. Inform. Polinema, pp. 93–100, 2016.

algorithms and applications: A survey,” Ain Shams Eng. J., vol. 5, no. 4, pp. 1093–1113, 2014.

A. Novantirani, M. K. Sabariah, and V. Effendy, “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine,” e-Proceeeding Eng., vol. 2, no. 1, pp. 1–7, 2015.

Suyanto, Machine Learning Tingkat Dasar dan Lanjut. Bandung: Informatika, 2018.

D. J. Haryanto, L. Muflikhah, and M. A. Fauzi, “Analisis Sentimen Review Barang Berbahasa Indonesia Dengan Metode Support Vector Machine Dan Query Expansion,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 2909–2916, 2018.

C. Rahmad, F. Rahutomo, M. A. Gustalika, and I. F. Rahmah, “Identification of sugarcane maturity scale based on RGB, Gabor feature extraction and Support Vector Machine,” IOP Conf. Ser. Mater. Sci. Eng., vol. 434, no. 1, 2018.

J. Mase, M. T. Furqon, and B. Rahayudi, “Penerapan Algoritme Support Vector Machine ( SVM ) Pada Pengklasifikasian Penyakit Kucing,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 10, pp. 3648–3654, 2018.

F. Rahutomo, I. Yanuar, R. Pratiwi, and D. M. Ramadhani, “Eksperimen Naïve Bayes Pada Deteksi Berita Hoax Berbahasa Indonesia Naïve Bayes ’ s Experiment On Hoax News Detection In Indonesian Language,” vol. 23, no. 1, pp. 1–15, 2019.

E. Hardiyanto and F. Rahutomo, “Studi Awal Klasifikasi Artikel Wikipedia Bahasa Indonesia Dengan Menggunakan Metoda K Nearest Neighbor,” vol. 9035, pp. 334–338, 2016.


Full Text: PDF

Article Metrics

Abstract View : 510 times
PDF Download : 87 times

DOI: 10.56327/jurnaltam.v10i2.744

Refbacks

  • There are currently no refbacks.