Analysis of Family Health with a Combination of Naive Bayes KNN Methods

Ona Maliki(1), Muis Nanja(2),


(1) Jurusan Sistem Informatika, Fakultas Ilmu Komputer, Universitas Ichsan Gorontalo, Gorontalo
(2) Jurusan Sistem Informatika, Fakultas Ilmu Komputer, Universitas Ichsan Gorontalo, Gorontalo
Corresponding Author

Abstract


Health is a very important part in the life of our nation and country, in a developed and developing nation there is a healthy society. Healthy can be defined as the state of an individual who is prosperous both physically, economically and socially. Health is what needs to be maintained and cared for for the survival of a nation and state. Seeing the importance of the health element in a nation, the government has implemented the Nawacita program with one of the points referring to family health. In implementing the healthy family program, the government has sought to collect data and control healthy families with a family approach. Looking at the data collection system for healthy families with status determination, that is, averaging the indicator values to get the family's health status. The researcher intends to develop in terms of determining family health status by using a combination method of the K-Nearest Neighbor (KNN) method with Naïve Bayes with the aim of knowing the results of applying the method and obtaining better results. Based on the results of the research conducted, the accuracy value of 93.53% was obtained in the combination model of the Naïve Bayes KNN method. So it can be concluded that the combination of these methods is good for determining family health status.


Keywords


Healthy Family, KNN, KNN-Naïve, Nive Bayes

References


Emilia Khairani Majid, Mappeaty Nyorong, Nuraini, Evaluasi Implementasi Supervisi Keperawatan di Ruang Rawat Inap Terpadu Rumah Sakit H. Adam Malik Medan, JUMANTIK Volume 7 No.2 Mei 2022

M. R. Fadli, “Memahami desain metode penelitian kualitatif,” vol. 21, no. 1, pp. 33–54, 2021.

N. M. Putry and B. N. Sari, “Komparasi Algoritma Knn Dan Naïve Bayes Untuk Klasifikasi Diagnosis Penyakit Diabetes Melitus,” Evolusi J. Sains dan Manaj., vol. 10, no. 1, pp. 45–57, 2022.

A. A. Syafitri Hidayatul AA, Yuita Arum S, “Seleksi Fitur Information Gain untuk Klasifikasi Penyakit Jantung Menggunakan Kombinasi Metode K-Nearest Neighbor dan Naïve Bayes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 9, pp. 2546–2554, 2018.

D. A. Nazaruddin, F. A. Bachtiar, and R. K. Dewi, “Klasifikasi Penyakit Kelamin Pada Wanita Dengan Menggunakan Kombinasi Metode K-Nearest Neighbor Dan Naïve Bayes Classifier,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 4, pp. 3266–3274, 2019.

N. Salamung et al., Keperawatan Keluarga (Family Nursing). 2021.

E. K. Majid and M. Nyorong, “Evaluasi Implementasi Supervisi Keperawatan di Ruang Rawat Inap Terpadu Rumah Sakit H . Adam Malik Medan,” vol. 7, no. 2, pp. 103–116, 2022.

Y. Melia, “KLASIFIKASI MENGGUNAKAN NAÏVE BAYES DAN K-NEAREST NEIGHBOR,” no. July, 2020.

Z. Arifin, “Penerapan Metode Knn (K-Nearest Neighbor) Dalam Sistem Pendukung Keputusan Penerimaan Kip (Kartu Indonesia Pintar) Di Desa Pandean Berbasis Web Dan Mysql,” NJCA (Nusantara J. Comput. Its Appl., vol. 4, no. 1, 2019.

P. Merupakan, T. Tidak, P. S. Informatika, F. Sains, D. A. N. Teknologi, and U. S. Dharma, “PENERAPAN METODE NAIVE BAYES Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer Program Studi Informatika Disusun Oleh : Katarina Haryaningtyas THE IMPLEMENTATION OF NAIVE BAYES METHOD TO CLASSIFY OBESITY LEVELS BASD ON EATING HAB,” 2022.

M. Kompetensi, K. Karyawan, D. I. Pt, J. Nugraha, and A. Amalia, “Jurnal Ekonomi dan Bisnis , Vol . 9 No . 2 Maret 2022 P - ISSN : 2503-4413 IMPLEMENTASI PENGEMBANGAN SUMBER DAYA MANUSIA DALAM UPAYA EKAKURIR COUNTER AGEN PARK ROYAL SIDOARJO Oleh :,” vol. 9, no. 2, 2022.

J. Lexi and M. M.A., Metodologi Penelitian Kualitatif. In Metodologi Penelitian Kualitatif, no. March. 2010.


Full Text: PDF

Article Metrics

Abstract View : 77 times
PDF Download : 30 times

DOI: 10.56327/jtksi.v6i1.1350

Refbacks

  • There are currently no refbacks.