IMPLEMENTATION OF LINEAR REGRESSION METHOD FOR PREDICTING CIMORY MILK SALES

Hana Atthifa Ryantika(1), Merry Parida(2), Rustam Rustam(3), Herman Afandi(4), Sani Hanika Lubis(5),


(1) Informations System, Institut Teknologi Bisnis Dan Bahasa Dian Cipta Cendikia, Lampung
(2) Informations System, Institut Teknologi Bisnis Dan Bahasa Dian Cipta Cendikia, Lampung
(3) Informations System, Institut Teknologi Bisnis Dan Bahasa Dian Cipta Cendikia, Lampung
(4) Informations System, Institut Teknologi Bisnis Dan Bahasa Dian Cipta Cendikia, Lampung
(5) Informations System, Institut Teknologi Bisnis Dan Bahasa Dian Cipta Cendikia, Lampung
Corresponding Author

Abstract


PT. Rasa Prima Sejati Wall's is a company engaged in the field of ice cream food and Cimory drinks. This company has various types of ice products and Cimory drinks to offer. Every year the company can create new products, especially in various flavors, not only that, the company guarantees the quality of the products it produces. The problem faced by the company is that the sale of available goods does not match consumer demand. The company also has not used predictors or plans for the sale of goods so that there is a buildup of goods which results in losses in the company. In this case the research will make predictions by looking at past sales data. The data taken is only sales data for Cimory products for the last three years from 2019-2021. Research using the Liner Regression method is one of the methods in the function of predicting sales. Linear regression is a statistical method used to construct a model or relationship between one or more independent variables X and response variable Y. The software used to support data processing is Rapidminer. The purpose of this study is to use data mining to identify the most popular, least popular, and desirable products or items at Pt. Rasa Prima so that companies can use this information as a guideline for managing their inventory and attending to customer disappointment properly available using a simple linear regression method, the prediction results for 2022 and RapidMinier are 770000. This prediction can help companies make decisions and reduce inventory shortages.

Keywords


Data Mining, Simple Linier Regression, RapidMiner v 7.1

References


C. E. Simbolon, “Penerapan Algoritma Regresi Linier Sederhana Dalam Memprediksi Keuntungan dan Kerugian Kelapa Sawit Pt . Sri Ulina,” J. Inf. Syst. Res., vol. 2, no. 2, pp. 169–172, 2021.

F. Ginting, E. Buulolo, and E. R. Siagian, “Implementasi Algoritma Regresi Linear Sederhana Dalam Memprediksi Besaran Pendapatan Daerah (Studi Kasus: Dinas Pendapatan Kab. Deli Serdang),” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 274–279, 2019, Doi: 10.30865/komik.v3i1.1602.

S. Kasus, P. Pt, S. Adimitra, and J. Cibitung, “Penerapan Data Mining Untuk Mempermudah Produksi Diapers Dengan Menggunakan Algoritma Regresi Linier,” vol. 1, no. 1, pp. 176–179, 2022.

Z. Niqotaini et al., “Analisis Perbandingan Kinerja Algoritma Klasifikasi Data Mining Penelusuran Minat Calon Mahasiswa,” vol. 11, pp. 271–290, 2022.

D. Harini and L. S. Wahyuniar, “Estimasi Jumlah Murid Baru Menggunakan Metode Forecasting,” J. Instr. Math., vol. 2, no. 2, pp. 64–70, 2021, Doi: 10.37640/jim.v2i2.1025.

Y. N. Lubis, H. Winata, and S. Sobirin, “Data Mining Untuk Memprediksi Data Pengunjung dengan Menggunakan Algoritma Simple Moving Average,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 21, no. 2, p. 50, 2022, doi: 10.53513/jis.v21i2.5958.

A. R. Samsudin and A. S. Purnomo, “Implementasi Data Mining Untuk Menentukan Produk Laris Dengan K-Means Clustering dan Weighted Moving Average Implementation Data Mining To Determine The Best Selling Products With K-Means Clustering And Weighted Moving Average,” no. December 2019, pp. 29–36, 2021.

N. Hafiza, “Model Prediksi Penjualan Barang Menggunakan Metode Single Exponential Smoothing,” vol. 2, no. 9, pp. 1–11, 2022, [Online]. Available: http://103.140.189.167/index.php/cyberarea/article/view/242

S. Widaningsih, “Penerapan Data Mining untuk Memprediksi Siswa Berprestasi dengan Menggunakan Algoritma K Nearest Neighbor,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2598–2611, 2022, doi: 10.35957/jatisi.v9i3.859.

J. Cybertech et al., “PENERAPAN DATA MINING UNTUK MENGESTIMASI,” no. x, 1978.

D. Novianty, N. D. Palasara, and M. Qomaruddin, “Algoritma Regresi Linear pada Prediksi Permohonan Paten yang Terdaftar di Indonesia,” J. Sist. dan Teknol. Inf., vol. 9, no. 2, p. 81, 2021, Doi: 10.26418/justin.v9i2.43664.

J. Ilmiah and W. Pendidikan, “Implementasi Algoritma K-Means Clustering Status Gizi Balita Nurul Rizki Octaviyani 1 , Rini Mayasari 2 , Susilawati 3 Universitas Singaperbangsa Karawang,” vol. 8, no. 13, pp. 370–381, 2022.

G. N. Ayuni and D. Fitrianah, “Penerapan metode Regresi Linear untuk prediksi penjualan properti pada PT XYZ,” J. Telemat., vol. 14, no. 2, pp. 79–86, 2019, [Online]. Available: https://journal.ithb.ac.id/telematika/article/view/321

W. M. Baihaqi, M. Dianingrum, and K. A. N. Ramadhan, “Regresi Linier Sederhana Untuk Memprediksi Kunjungan Pasien Di Rumah Sakit Berdasarkan Jenis Layanan Dan Umur Pasien,” J. Simetris, vol. 10, no. 2, pp. 671–680, 2019, [Online]. Available: https://www.jurnal.umk.ac.id/index.php/simet/article/view/3484

A. Hijriani, K. Muludi, and E. A. Andini, “Implementasi Metode Regresi Linier Sederhana Pada Penyajian Hasil Prediksi Pemakaian Air Bersih Pdam Way Rilau Kota Bandar Lampung Dengan Sistem Informasi Geofrafis,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 11, no. 2, p. 37, 2016, Doi: 10.30872/jim.v11i2.212.


Full Text: PDF

Article Metrics

Abstract View : 21 times
PDF Download : 34 times

DOI: 10.56327/ijiscs.v7i1.1333

Refbacks

  • There are currently no refbacks.