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Abstract 

The aim of this work is to study the existence, uniqueness 

and stability of periodic solutions of some classes for non-

linear systems of new Volterra integral equations with 

singular kernel in two variables by using Riemann integrals. 

Furthermore, we investigation the existence, uniqueness 

and stability of the fundamental tools employed in the 

analysis are based on applications by depending on the 

numerical-analytic method for studying the periodic 

solutions of ordinary differential equations which were 

introduced by Samoilenko. The study of such nonlinear 

Volterra integral equations with singular kernel leads us to 

improve and extend Samoilenko method. Theus the non-

linear integral equations with singular kernel that we have 

introduced in the study become more general and 

detailed than those introduced by Butris.  

 

1.0 INTRODUCTION 

      Integral equation has been arisen in many mathematical and engineering field, so that 

solving this kind of problems are more efficient and useful in many research branches.  

Analytical solution of this kind of equation is not accessible in general form of equation and we 

can only get an exact solution only in special cases. But in industrial problems we have not 

spatial cases so that we try to solve this kind of equations numerically in general format. Many 

numerical schemes are employed to give an approximate solution with sufficient accuracy 

[3,4,6,7,8,9,10].  

        Integral equations of various types and kinds play an important role in many branches of 

mathematics. Over the past thirty years substantial progress has been made in developing 

innovative approximate analytical and purely [5,11,13]. 

        An integral equation is a functional equation in which the unknown function appears 

under one or several integral signs; if, in addition, the equation contains a derivative of this 

function we call the equation an integral equations. In an integral equations of Volterra type 

the integrals containing the unknown function are characterized by a variable upper limit of 
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integration. In this study we want to discuss on convergence of projection method with integral  

equation then present a numerical solution to this type of equation [11,12,13,15,16,17].   

         Samoilenko [12,13], assumes the numerical analytic method to study the periodic solutions 

for ordinary differential equations and their algorithm structure. This method includes uniformly 

sequences of periodic functions and the result is the use of the periodic solutions on a wide 

range which is different from the processes in industry and technology.  

         Consider the following Volterra integral equation with singular kernel which has the form:  

u(t, u0 ) = f(t) + ∫ [ f(s,u(s, u0),
t

τ  ∫ H(s,τ )h(τ, η,u(η, u0))dη)]
b(s)

a(s) ds.                                         …  (VI) 

                Suppose that the functions f(t, u,v, ) = (f1(t, u, v  ), f2(t, u, v ), ⋯ , fn(t, u, v )), 

 h(t, s, u) = (h1(t, s,u), h2 (t, s,u), ⋯ , hn(t, s,u)),f(t) = (f1(t), f2(t), ⋯ , fn(t))are defined and continuous 

in the domain: 

(t, u, v ) ∈ R1 × D× D1  = (−∞,∞) × D × D1 ,                                                                                             ⋯ (1)  

which are continuous functions in t, u, v  and periodic in t of period T.  Also a(t) and b(t) are 

continuous and periodic in t of period T,where D, D1  is closed and bounded domains subsets 

of Euclidean space Rn . 

                Suppose that the functions f(t, u, v ),  and h(t, s,u) satisfies the following inequalities: 
‖f(t, u, v, w)‖ ≤ M ,

    
‖h(t, s,u)‖ ≤ N      

                 }                                                                                                                   ⋯ (2)   

‖f(t, u1, v1 ) − f(t, u1 , v1 )‖ ≤ L1‖u1 − u2‖ + L2‖v1 − v2‖  ;                                                                       ⋯ (3) 
‖h(t, s, u1) − h(t, s, u2)‖ ≤ L3‖u1 − u2‖ .                                                                                                         ⋯ (4)  

∀ t ∈ R1,u, u1, u2 ∈ D, v,v1, v2 ∈ D1where M , N  , L1 , L2 and L3are positive constants. Furthermore 

 whose kernel function H(t, s) : R1×R1 → R1 is singular   which is defined ,continuous and periodic 

in t, s  and satisfy the following conditions  

∫ ‖H(t, s)‖ds ≤ Q < ∞

b(t)

a(t)

  ,                                                                                                                                 ⋯ (5) 

where−∞ < τ ≤ s ≤ t ≤ τ + T < ∞ Q  is positive constant and ‖. ‖ = maxt ∈[τ,τ+T]∈[0,T]  |. | .   

         

We define a non-empty sets 

Df = D −
T

2
MQ   ,       

  

D1f = D1 −
T

2
ML3 Q   .

              

}
  
 

  
 

                                                                                                            ⋯ (6)  

Moreover, we suppose that the greatest value of the following equation 

q =
T

2
 [L1+ L2 + L3 Q  ], does not exceed unity, i. e. 

q < 1 .                                                                                                                                                                       ⋯ (7) 

              By using Lemma 3.1[13 ],we can state and proof the following:  

Lemma 1.  Let f(t, u, v ) be a vector function which is defined in the interval t ∈ [τ, τ + T] then: 

‖L(t, u0)‖ ≤ β(t)M                                                                                                                                                ⋯ (8) 

where β(t) = 2(t − τ)(1 −
t−τ

T
) and 

 

L(t, u0) = ∫[ f(s,u(s, u0),

t

τ

 ∫ H(s, τ )h(τ, η, u(η, u0 ))dη)

b(s)

a(s)

− 

−
1

T
 ∫ f(s, u(s,u0 ),

τ+T

τ

 ∫ H(s, τ )h(τ, η, u(η, u0))dη)ds]ds

b(s)

a(s)
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Proof. Assuming 

‖L(t, u0 )‖   ≤ (1 −
t − τ

T
) ∫‖f(s, u0(s, u0 )

t

τ

, ∫ H(s , τ )h(τ, η, u(η, u0 ))dη

b (s)

a(s)

‖ ds 

+
t − τ

T
 ∫  ‖f(s, u0(s, u0 ) ,

τ+T

τ

 ∫ H(s, τ )h(τ, η, u(η, u0))dη  

b(s)

a(s)

‖ds 

 

≤ ((1 −
t − τ

T
) ∫Mds

t

τ

+
t − τ

T
∫ Mds,

τ+T

τ

 

≤ β(t)M 

for all t ∈ [τ, τ + T] and u0 ∈ Df . 
 

2.0 APPROMIXMATION PERIODIC SOLUTIONS OF (VI) 

The study of the approximation of periodic solution for Volterra integral equation (VI) will be 

introduced by the following theorem. 

Theorem 1. Let f(t, u, v ), h(t, s,u) and f(t) be vector functions which are defined, continuous and 

periodic of period T on the domain (1), satisfy the inequalities and condition (2) to (7), then 

there exist the sequence of functions: 

 

um+1(t, u0) = f(t) +∫[ f(s, um(s,u0 ),

t

 τ

 ∫ H(s, τ )h(τ, η, um(η, u0))dη)  

b (s)

a(s)

 

−
1

T
  ∫  f(s, um(s, u0),

 τ+T

  τ

  ∫ H(s , τ )h(τ, η, um(η, u0))dη)ds]ds  

b (s)

a(s)

         ⋯ (9) 

with 

u0(t, u0 ) = f(t)        , m = 0,1,2, ⋯, 

periodic in t of period T, and convergent uniformly as m → ∞ in the domain: 

(t, u0 ) ∈ [τ , τ + T] × Df                                                                                                                           …   (10)     

to the limit function u0 (t, u0) defined in the domain (10) which is periodic in t of period T and 

satisfying the system of integral equations: 

 

u(t, u0 ) = f(t) + ∫[ f(s,u(s, u0),

t

 τ

 ∫ H(s, τ )h(τ, η, um (η, u0 ))dη)

b(s)

a(s)

 

−
1

T
∫  f(s, u(s, u0),

 τ+T

 t

  ∫ H(s, τ )h(τ, η, um (η, u0))dη)ds]ds

b(s)

a(s)

    ⋯ (11)  

with 

‖u0(t, u0 ) − u0(t. u0 )‖ ≤ β(t)M                                                                                                                       ⋯ (12) 
‖u0(t, u0 ) − um (t. u0)‖ ≤ ω m(1 − ω)−1β(t)M                                                                                           ⋯ (13)  

for all m ≥ 0 and t ∈ [τ , τ + T]. 

 

Proof. Consider the sequence of functions u1(t, u0), u2(t, u0 ), ⋯ , um (t, u0), ⋯ , defined by the 

recurrences relation (9), each of these functions are defined and continuous in the domain (1) 

and periodic in t of period T. 

 

         Now, by using (10) and Lemma 1, when m=0, we get  

‖u1(t, x0 ) − u0(t ,u0 )‖ =  



IJISCS | 146 

 

≤ (1 −
t − τ

T
)∫‖f(s, u0(s , u0)

t

 τ

, ∫ H(s, τ )h(τ,η, u(η, u0))dη‖𝑑𝑠

b(s)

a(s)

  

      +
t − τ

T
∫  ‖f(s,u0 (s, u0),

 τ+T

t

∫ H(s, τ )h(τ, η, u(η, u0))dη‖  𝑑𝑠

b(s)

a(s)

   

     ≤ β(t)M                                    

and hence 

‖u1(t, x0 ) − u0(t ,u0 )‖ ≤
T

2
M .                                                                                                          ⋯ (14) 

 From (21), we have  

‖v1(t, u0 ) − v0(t, u0)‖ =  ∥ ∫ H(t, s)h(t, s, u1(s, u0 ))

b(t)

a(t)

ds − ∫ H(t, s)h(t, s, u0)ds

b(t)

a(t)

∥ 

≤ ∫ ‖H(t, s)‖

b(t)

a(t)

‖u1(s ,u0 ) − u0‖ds 

≤ L3
T

2
MQ  

and hence 

‖v1(t, u0) − v0(t, u0 )‖ ≤ L3
T

2
MQ                                                                                                   ⋯ (15) 

 for all t ∈ [τ , τ + T],  u0 ∈ Df and  v0(t, u0) = ∫ h(t, s, u0)
b(t)

a(t) ds ∈ D1f i.e. v1(t, u0 ) ∈ D1, when u0 ∈ Df . 

Thus by mathematical induction, we have  

‖um(t,u0 ) − u0‖ ≤ M β(t) ≤
T

2
M                                                                                                ⋯ (16)  

i.e. um (t, u0) ∈ D for all t ∈ [τ , τ + T], u0 ∈ Df . 

Now from (16), gives  

‖vm(t, u0) − v0(t, u0 )‖ ≤ L3
T

2
MQ                                                                                                    ⋯ (17) 

 i.e. vm(t, u0)D1,  for all t ∈ [τ , τ + T],u0 ∈ Df . 

where vm(t, u0) = ∫ H(t, s)h(t, s, um(s, u0 ))
b(t)

a(t) ds forall m = 0,1,2, ….  

       We claim that the sequence of functions um(t, u0 ) is uniformly convergent on the domain  

(10). 

For m = 1 in (9) and using Lemma 1, we find that  

‖u2(t, u0 ) − u1(t, u0)‖  

≤ (1 −
t − τ

T
) ∫  [L1‖u1(s, u0) − u0‖ +L2( ‖u1(s , u0) − u0‖) + L3(Q‖u1(s, u0) − u0‖)ds +

t

τ

 

+
t − τ

T
∫  [L1‖u1(s, u0) − u0‖ +

τ+T

t

L2( ‖u1(s, u0) − u0‖)+L3(Q‖u1(s, u0 ) − u0‖)ds 

≤  [L1+ L2 + L3 Q  ]M
T

2
[(1 −

t − τ

T
) ∫ ds +

t

τ

t − τ

T
∫ ds] .

τ+T

 t

 

 ≤ β(t)M
T

2
[L1+ L2 +   L3Q] . 

and hence 

‖u2(t, u0 ) − u1(t, u0)‖ ≤ ωβ(t)M. 

Suppose that the following inequality 

‖uk+1(t, u0) − uk(t, u0 )‖ ≤  ωkβ(t)M                                                                                                    ⋯ (18) 

is holds for some m = k, then we shall to prove that: 
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‖uk+2(t, u0) − uk+1(t, u0)‖ ≤ ω
k+1β(t)M .                                                                                          ⋯ (19)  

From (18) and using lemma1, when m = k + 1 and the inequality (19) we get: 

‖uk+2(t, u0) − uk+1(t, u0)‖ ≤ (1 −
t

T
) ∫  [L1‖uk+1(s, u0) − uk(s,u0 )‖

t

τ

 

 +L 2L3(Q‖uk+1(s, u0) − uk (s, u0)‖)]ds 

+
t

T
∫  [L1‖uk+1(s, u0) − uk(s, u0)‖ + 

τ+T

t 

   

+L2L3(Q‖uk+1(s, u0 ) − uk(s, u0)‖)]ds                                                                   

  

≤
T

2
 [L1+ L2+L3Q ]ω

kβ(t)M  

≤ ωk+1β(t)M  

So that 

‖uk+2(t, u0) − uk+1(t, u0)‖ ≤ ω
k+1β(t)M   

By mathematical induction and by (18) and (19) the following inequality is holds:  
‖um+1(t, u0 ) − um (t, u0)‖ ≤ ωmβ(t)M                                                                                              ⋯ (20)  

where ω =
T

2
 [L1+ L2 + L3 Q  ] , for all m = 0,1,2, ⋯ 

From (20) we conclude that for k ≥ 0,  

we have the following inequality: 

‖um+k(t, u0) − um(t, u0 )‖ ≤ ‖um+k(t, u0 ) − um+k−1(t, u0)‖ 

+‖um+k−1(t, u0 ) − xm+k−2(t, u0 )‖ + ⋯+ ‖um+1(t, u0) − um (t, u0)‖ 

≤ ωm+k−1‖u1(t, u0 ) − u0‖ +ω
m+k−2‖u1(t, u0 ) − u0‖ + ⋯+ ωm‖u1(t, u0) − u0‖     

≤ ωm(1 + ω + ω2 + ⋯ + ωk−2 +  ωk−1)‖u1(t, u0) − u0‖ 

Therefore 

‖um+k(t, u0) − um (t, u0)‖ ≤ ω m(1 − ω)−1β(t)M .                                                                       ⋯ (21) 

for all t ∈ [τ , τ + T], u0 ∈ Df . 

By using the condition (7) and the inequality (21), we find that 

lim
m→∞

ωm = 0                                                                                                                                              ⋯ (22)     

       The relation (22) and (23) prove the uniform convergence of the sequence of functions (9) 

in the domain (10) as  m → ∞. 

Let 

lim
m→∞

um (t, u0) = u
0 (t, u0)                                                                                                                           ⋯ (23) 

         Since the sequence of functions um (t, u0) is periodic in t of period T, Then the limiting 

function u0(t, x0 ) is also periodic in t of period T. 

          Moreover, by the hypotheses and conditions of the theorem, the inequalities (12) and 

(13) are satisfied for all  m ≥ 0.      

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟐.With the hypotheses and all conditions of the theorem 1, the periodic solution of 

Volterra integral equation (VI) is a unique on the domain (1). 

          

Proof.  Let u∗ (t, u0)  be another periodic solution of Volterra integral equation (VI), i. e. 

      

u∗(t, u0) = f(t) + ∫[ f(s, u∗ (s,u0 ),

t

 τ

 ∫ H(s, τ )h(τ, η, u(η, u0 ))dη

b (s)

a(s)

) 

−
1

T
∫  f(s, u∗(s, u0),

τ+T

t

 ∫ H(s, τ )h(τ, η, u(η, u0))dη

b(s)

a(s)

)ds ]ds   

and then we have 
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‖u(t, u0 ) − u
∗(t, u0)‖   

≤ (1 −
t

T
) ∫  [L1‖u(s, u0) − u

∗ (s, u0)‖ 

t

τ

 

  +
t

T
∫  [L1‖u(s, u0 ) − u

∗ (s, u0)‖

 τ+T

t

 + L2L3 (Q‖u(s, u0 ) − u
∗(s, u0)‖)ds   

 

   ≤
T

2
 [L1+ L2+L3Q  ]‖u(t, u0) − u

∗(t, u0)‖ , 

so that 

‖u(t, u0 ) − u
∗(t, u0)‖ ≤  ω‖u(t, u0 ) − u

∗ (t, u0 )‖. 

By iteration we find that 

‖u(t, u0 ) − u
∗(t, u0)‖ ≤ ωm‖u(t, u0) − u

∗(t, u0)‖ 

But from the condition (15), we get Λm → 0  when m → ∞, hence we obtain that 

u(t, u0 ) = u∗(t, u0). In other words u(t, u0) is a unique periodic solution of (1). ∎ 

 

3.0 EXISTENCE PERIODIC SOLUTION OF (VI) 

The problem of existence of periodic solution of period T of (VI) is uniquely connected with 

existence of zero of the function ∆(0, u0) = ∆ which has the form: 

∆(t, u0) =
1

T
∫  f(t, u0 (t, u0),

τ+T

τ

 ∫ H(t, s)h(t, s, u0(s,u0 ))dτ)

b(t)

a(t)

dt                                            ⋯ (24)  

where u0 (t, u0) is the limiting function of the sequence of functions um (t, u0). 

∆m(t, u0) =
1

T
∫ f(t,um (t, u0)

τ+T

τ

, ∫ H(t, s)h(t, s, um(s,u0 ))dτ)

b(t)

a(t)

dt   ⋯ (25)  

for all m = 0,1,2, ⋯ 

 

Theorem 3. Let all assumptions and conditions of theorem 1 and 2 are satisfied, then the 

following inequality is satisfied: 
‖∆(0,u0 ) − ∆m(0, u0 )‖ ≤ ωm+1(1 − ω)−1M                                                                                      ⋯ (26) 

for all m ≥ 0 , u0 ∈ Df . 

Proof. By the the functions (24) and (25) we get  

‖∆(0, u0) −∆m (0,u0 )‖

≤
1

T
∫  ‖f(t, u0(t, u0),

 τ+T

τ 

 ∫ H(t, s)h(t, s,u0 (s, u0))ds)

b(t)

a(t)

dt

− f(t, um(t, u0 ), , ∫ H(t, s)h(t, s, um(s,u0 ))ds)

b(t)

a(t)

∥ ds.                 

                                                               

From the inequalities (3) to (8), we get: 

‖∆(0, u0) − ∆m(0, u0)‖ ≤  [L1+ L2 + L3Q ]
1

T
∫ ‖u0(t, u0) − um(t, u0 )‖

τ+T

τ

dt 

≤   ωm+1(1 − ω)−1M .        

But ω =  [L1+ L2Q1 + L3Q2 ], thus the above inequality can be written as: 

‖∆(0, u0) − ∆m(0, u0)‖ ≤ ωm+1(1 − ω)−1M , i. e. the inequality (37) satisfied for all m ≥ 0.    

Theorem 4.Let (VI) be defined on the interval [a, b]. Suppose that for  m ≥ 0, the function 

∆m(0, u0) defined according to formula (25) satisfies the inequalities:  
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 min   ∆m(0, u0) ≤ −  ρm ,
a + P ≤ u0 ≤ b −P

max   ∆m(0, u0) ≥ ρm  ,

a + P ≤ u0 ≤ b −P

       }                                                                                                        ⋯ (27)  

          Then the system (1) has periodic solution u = u(t, u0) for which u0 ∈ [a + P, b − P], where P =

M
T

2
 and ρm = ωm+1(1 − ω)−1M 

Proof: Let u1, u2 be any two points in the interval [a + P, b − P] such that: 

    

Δm (0, u1) = min  Δm(0, u0)  ,
a + P ≤ u0 ≤ b − P

∆m(0, u2) = max  ∆m (0, u0 ) ,

a + P ≤ u0 ≤ b − P

       }                                                                                               ⋯ (28)  

Taking in to account inequalities (27) and (28), we have  

∆(0, u1) = ∆m(0, u1) + [∆(0, u1) − ∆m(0, u1)] ≤ 0 ,

∆(0, u2) = ∆m(0, u2) + [∆(0, u2 ) − ∆m(0, u2)] ≥ 0  
}                                                                      ⋯ (29)  

         It follows from the inequalities (29) and the continuity of the function ∆(0, u0), that there 

exists an isolated singular point u0  ,u0 ∈ [u1, u2], such that ∆(0, u0 ) = 0. This means that the 

Volterra integral equation (VI) has a periodic solution u = u(t, u0) for which u0 ∈ [a + P, b − P].     

Remark 1. Theorem 4 is proved when u0 is a scalar singular point which should be isolated (For 

this remark, see [12]). 

 

4.0 STABILITY PERIODIC SOLUTION OF (VI) 

In this section, we study the stability of a periodic solution for the integral equation (VI). 

Theorem 5.If the function ∆(0, u0 ) is defined by ∆ ∶  Df → Rn , and by the equation (24), 

where u0(t, u0) is a limit of the sequence function {um (t, u0)}m=0
∞ . Then the following inequalities 

hold: 

‖∆(0, u0)‖ ≤ M                                                                                                                                             ⋯ (30)  

and 

‖∆(0, u0
1) − ∆(0, u0

2 )‖ ≤
2

T
ω(1 − ω)−1‖f 1(t) − f 2(t)‖                                                               ⋯ (31)  

for all u0, u0
1, u0

2 ∈ Df and E is identity matrix. 

Proof. From the properties of the function u0(t, u0 ) as in theorem 1, the function ∆(t, u0) is 

continuous and bounded by M in the domain  R1 × Df. 

By using the function (24), we have  

‖∆(0, u0
1) − ∆(0, u0

2 )‖ =  

≤
1

T
∫  ‖f(t, u0(t, u0

1),

τ+T

τ

 ∫ H(t, s)h(t, s,u0 (s, u0
1))ds)

b(t)

a(t)

   − f(t, u0(t, u0
2), ∫ H(t, s)h(t, s,u0 (s, u0

2))ds)

b(t)

a(t)

∥ dt  

So that 

‖∆(0, u0
1) − ∆(0, u0

2 )‖ ≤  [L1  + L2 + L3Q ]
2

T
∫ ‖u0(t, u0

1) − u0(t, u0
2)‖

τ+T

τ

dt 

and hence 

‖∆(0, u0
1 ) − ∆(0, u0

2)‖ ≤
2

T
 ω‖u0 (t, u0

1) − u0 (t, u0
2)‖                                                                         ⋯ (32)  

where u0(t, u0
1) , u0(t, u0

1)  are the solution of the integral equation 

u(t, u0
k) = f k(t) + ∫  [f(s, u(s, u0

k ),

t

τ

 ∫ H(s, τ )h(τ, η, u(η, u0
k))dη

b(s)

a(s)

) 

  −
1

T
∫  f(s,u(s, u0

k),

τ+T

τ

 ∫ H(s, τ )h(τ, η, u(η, u0
k))dη)ds]ds

b(s)

a(s)

⋯ (33)    
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with 

u0
k(t, u0 ) = f k(t) = u0

k  , where   k=1, 2. 

     From (33), we get: 

‖u0(t, u0
1 )−u0(t , u0

2)‖

≤ ‖f 1(t) − f 2(t)‖ + (1 −
t − τ

T
)∫  [L1‖u

0(s, u0
1) − u0(s, u0

2 )‖

t

τ

+ (L2 + L3 Q)‖u
0(s, u0

1 ) − u0(s , u0
2)‖)]ds 

+
t − τ

T
∫  [L1‖u

0(s, u0
1 ) − u0(s ,u0

2 )‖ +

 τ+T

t

  

                       +(L2 + L3 Q) ‖u
0(s , u0

1) − u0 (s, u0
2)‖)]ds 

 ≤ ‖f 1(t) − f 2(t)‖ + ω‖u0(t, u0
1) − u0(t, u0

2)‖. 

So that: 
‖u0 (t, u0

1)−u0(t, u0
2)‖ ≤ (1 − ω)−1‖f 1(t) − f 2(t)‖                                                                        ⋯ (34) 

For all t ∈ [0, T] , u0
1, u0

1 ∈ Df. 

So, substituting inequality (34) in the inequality (33) we get the inequality (31).   

Remark 2. Theorem 5, confirms the stability of the solution for the system (1), that is when a slight 

change happens in the point u0 , then a slight change will happen in the function ∆(0, u0).  For 

this remark see [8].  

 

5.0 BANACH FIXEDPOINT THEOREM 

In this section we study the existence and uniqueness periodic solution of integral equation 

(VI) by the following: 

Lemma 2.[1]. Let S be a space of all continuous function on  R1 , for any z ∈ s  define ‖z‖ by ‖z‖ =

max
t∈[τ,τ+T]

|z(t)|. Then (s, ‖z‖) is a Banach space. 

Theorem 6.[1]. Let E be a Banach space. If T∗ is a contraction mapping on E Then T ∗ has one 

and only one fixed point in E. 

Theorem 7. Let f(t, u, v, ), h(t, s,u) and f(t) be vectors functions which are defined and continuous 

and periodic in t of period T on the domain (1) and satisfying all inequalities and conditions of 

the theorem 1 and 2. 

         Then the integral equation (VI) has a unique periodic continuous solution z(t, u0 ) on the 

domain (2), provided that  q =
T

2
 [L1+ +L2 +  L3Q ]. 

𝐏𝐫𝐨𝐨𝐟.  Let (C(G), ‖. ‖) is a Banach space, where G = {(t, u, v ); t ∈ R1,u ∈ D, v ∈ D1 }, 

Define a mapping T∗ on G by 

T∗z(t, u0) = f(t) + ∫[ f(s, z(s, u0),

t

τ

 ∫ H(t, s)h(s, τ, z(τ, u0))dτ)

b(s)

a(s)

 

−
1

T
∫ f(s, z(s, u0),

τ+T

t

  ∫ H(t, s)h(s,τ, z(τ, u0))dτ)ds]ds

b (s)

a(s)

 

         Since f(t) , f(t, z, v)and H(t,s) are continuous on the domain (2), then 

 ∫ H(t, s)h(t, s, z(s, u0))ds
b(t)

a(t)  are also continuous on the domain (2).  domain, 

So that  

∫[ f(s, z(s, u0),

t

τ

  ∫ H(s, τ )h(τ, η, z(s, u0))dη

b(s)

a(s)

) 

−
1

T
∫ f(s, z(s, u0),

τ+T

t

  ∫ H(s, τ )h(τ, η,z(s, u0))dη

b (s)

a(s)

)ds]ds. 



IJISCS | 151 

 

is also continuous on same domain . 

Thus T∗z(t, u0 ) is continuous on the  domain(1). 

Hence 

T∗z(t, u0): G → G 

         Next we claim that T ∗z(t, u0) is a contraction mapping on G, let z(t, u0), w(t, u) ∈ G, Then 

‖T∗z(t, u0) − T
∗w(t, u0)‖  ≤ ω max

t∈[τ,τ+T]
{|z(t, u0 ) − w(t, u0 )|}  

So that 

‖T∗z(t, u0) − T
∗w(t, x0 )‖ ≤ ω‖z(t, u0) − w(t, x0 )‖. 

         Since 0 < ω < 1 , we find T∗ is a contraction mapping on t ∈ [τ, τ + T]then by theorem 6, T ∗ 

has a unique fixed point z(t, x0 ) ∈ t ∈ [τ, τ + T]i. e. 

 T∗z(t, x0 ) = z(t, x0  ) and 

z(t, u0) = f(t) + ∫[ f(s,z(s, u0),

t

τ

 ∫ H(s , τ )h(τ, η, z(s , u0))dη

b (s)

a(s)

) 

           −
1

T
∫ f(s, z(s, u0),

τ+T

t

 ∫ H(s, τ )h(τ, η, z(s, u0))dη

b(s)

a(s)

)ds]  

     Hence z(t, u0 ) is the unique continuous solution for the integral equation (VI) on the domain 

(1). 

 

6.0 CONCLUSION 

         This paper provided   some results in the existence, uniqueness and stability periodic 

solution of new Volterra integral equation with singular kernel. Theorems on existence and 

uniqueness and stability periodic solution are established under some necessary and sufficient 

conditions on closed and bounded domains (compact spaces). The numerical-analytic 

method has been used to study the periodic solutions of ordinary differential equations which 

were introduced by (Samoilenko, A. M.) 
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